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1 The Real And Complex Number Systems

1.1 The Real Number System

R : The set of real numbers

Q : The set of rational numbers (Numbers in the form ™ where m,n are

integers, n # 0)
Z : The set of integers, {0,1,—1,2,-2,3,-3,...}
N : The set of natural numbers, {1,2,3,4,...}
Proofs:
1) Direct Proofs
2) Indirect Proofs

a) Proof by Contraposition
b) Proof by Contradiction

1.1 Example (Direct Proof). If f is differentiable at © = ¢ then f is con-
tinuous at x = c.

Proof. Hypothesis: f is differentiable at x = ¢, i.e.
S = /)

= f'(¢) exists and it is a number.
z—e T —C

Claim: f is continuous at ¢, i.e. lim,_.. f(z) = f(¢).

im o) = tim (L= 0 04 00)

T—cC T—C T —C
= lim J@) = Jlo) lim(z — ¢) + lim f(c)
r—=c r —C T—c ., x—c
f'(0) 0 f(e)
= fle) 0

1.2 Example (Indirect Proof: Proof by Contraposition). Let n be an integer.
If n? is even then p is even,
—— ——
P q
If p then ¢: p = ¢. This is equivalent to: If not ¢ then not p, i.e. ~q =~ p.
If n is odd then n? is odd.



Proof. Assume n is odd then n = 2k + 1 for some integer k. Then

n® = 4k* + 4k + 1 = 2(2k* + 2k) + 1
N——

an integer

So n? is odd. m

1.3 Example (Indirect Proof: Proof by Contradiction). Show that /2 is
not a rational number.

Proof. If ¢ = 2 then ¢ is not rational. We assume p and ~ ¢, proceed and
—

-~

p q
get a contradiction. So assume ¢ = 2 and c is rational. Then ¢ = = where

m,n € Z, n # 0 and m,n have no common factors. We have ¢? = ’Z—; then
m? = 2n?. So m? is even and m is even. Then m = 2k for some integer k.
We get 4k? = 2n? or 2k* = n?. Then n? is even and n is even. Then n = 2/
for some integer ¢. So m and n have a common factor. A contradiction. []

Some Symbols And Notation
e p = q: if p then ¢ (p implies q)
e p < q: if p then g and if ¢ then p (p iff q)

S : such that

e . : therefore, so

V : for all, for every
e d: for some, there exists

1.4 Example. Consider the following two statements:
(HVzeR JyeR, y<z
(2)JyeR VzeR, y<z — nottrue

(1) says, given any real number z we can find a real number y (depending
on x) such that y is smaller than x.

(2) says, there is a real number y that is smaller than every real number x.
This is false.



1.5 Example. Let A={p:peQ, p>0,p’<2}and B={p:peQ, p>
0, p* > 2}.

Claim: A has no largest element and B has no smallest element.

Proof. Given any p € Q, p > 0, let ¢ = p — 5‘% = %. Then ¢ € Q and

q>0. Let p€ A, ie. p* < 2. Then show ¢ € A and p < q.

2
2 p°—2
—2<0 so =p— >
p q=0p D+ 2 p
2 o _ 2p + 2 2_2_4p2+4+8p—2p2—8—8p_2(p2—2)<O
1 p+2 p?+4+4p (p+2)2
So ¢?> < 2. Then we have ¢ € A and A has no largest element. n

Properties of R
1) R has two operations + and - with respect to which it is a field.

(i) Ve,y e R, z+yeR

(i) Vz,y € R, z+y=y+ z (commutativity of +)

(iii) Vz,y,z € R, x4 (y+2) = (v +y) + z (associativity of +)
(iv) 3 an element (0 element) such that Vx €e R, z+0==x
(v) Vx € R 3 an element —x € R such that z 4+ (—z) =0

(vi) Ve,y e R, z-yeR

)
)
)
)
)
(vii) Ve,y e R, z-y=y-x
(viii) Vz,y,z € R, z-(y-2)=(z-y)- 2
(ix) 3 an element 1 # 0 in R such that Vo e R, z-1=z
(x) Vz # 0 in R there is an element X in R such that z- 1 =1
(xi) Vz,y,2z€R, z-(y+z2)=z-y+z-z
1.6 Remark. Note that Q with + and - is also a field.
2) Ris an ordered field, i.e. there is a relation < with the following properties

(i) Vz,y € R one and only one of the following is true:

r<y, x=y, y<az (Trichotomy Law)



(i) Vz,y,z € R, z<yandy<z=x<z (Transitive Law)

(i) Vz,y,2z € R, z<y=z+z<y+z

(iv) 0<zand0<y=0<zx-y
1.7 Remark. Note that Q is also an ordered field.
3) R is complete.
1.8 Definition. Let £ C R. We say E is bounded above if there is an element
b € R such that Vo € E we have x < b. b is called an upper bound for E.

1.9 Example. E={p:pecQ, p>0, p> <2}. Thenb=3,b=2b=5,
b =100, b = /2 are all upper bounds for E.

1.10 Example. £ =N = {1,2/3,4,...} is not bounded above.
1.11 Remark. Bounded below and lower bound are defined analogously.
1.12 Definition. Let £ C R be bounded above. A number b € R is called

a least upper bound (lub) or supremum (sup) of E if

(i) bis an upper bound for £

and

(ii) if &' any upper bound for E, then b < ¥’

1.13 Remark. sup E need not be a member of E. If sup £ is in E then it
is called the maximum element.

Completeness Property (or Least Upper Bound Property) of R:
Every non-empty set £ C R that is bounded above has a least upper bound
in R.

1.14 Remark. QQ does not have LUB property.

Proof. Let E={p:pe @, p>0, p> <2} is a non-empty subset of Q that
is bounded above but it has no least upper bound in Q. Assume b € QQ is a
least upper bound of E. Since p=1¢€ E and p < b we have 1 < b. We have
two possibilities:



i) be E
(i) b¢ E

If b € E, then dq € E such that b < q. Then b cannot be an upper bound.
Sob ¢ E. Since b € Q and 0 < b, we have that b*> < 2 is not true. By
trichotomy law, we have either > = 2 or 2 < b2. If b € Q, b> = 2 cannot be
true. So 2 < b2

Let F={p:peQ, p>0,2<p?}. Then b € F and there is an element
¢ in F' such that ¢ < b. Show ¢ is an upper bound for E. Let p € E be an
arbitrary element. Then p > 0 and p? < 2. Also ¢ € F so ¢ > 0 and 2 < ¢

pPP<2and2<@F=pi<F=p<q

So q is bigger than every p € E, i.e. ¢ is an upper bound for E. Then b < q.
Also ¢ < b. Contradiction. n

1.15 Remark. Analogously we have greatest lower bound (glb) or infimum
(inf) and the Greatest Lower Bound Property.

1.16 Theorem.

(a) (Archimedian Property) For every x,y € R, x > 0, there is n € N
(depending on x,y) such that nz > y.

(b) (Q is dense in R) For every z,y € R with x < y, 3p € Q such that
r<p<y.

Proof.

(a) Assume it is not true. So there are z,y € R such that > 0 for which
there is no n € N such that nx > y. So for all n € N we have nz < y.
Let E = {nz : n € N} = {z,2x,3z,...}. Then y is an upper bound
for E and E # (). So F has a least upper bound, say a € R. Since
x>0, —x < a. Then a — x is not an upper bound for E. So there
is an element of E, say ma (where m € N) such that o — z < ma.
Then o« < (m + 1)z. This element of E is bigger than a@ = sup E.
Contradiction.



(b) Let z,y € R be such that + < y. Then y — z > 0. By part (a),
dn € N such that n(y —z) > 1, i.e. ny > 1+ nz. In (a), replace
y by nx and x by 1 > 0. So dm; € N such that m; > nz. Let
A={m:m € Z, nt <m}. Then A # () since m; € A. Since A
is non-empty set of integers which is bounded below, A has a smallest
element mgy. Then nx < my and my € Z. mo — 1 ¢ A. So we have
nxr > mg—1. So mg—1 < nz < mg. Then nx < mg, mg < 1+ nz and
1+nz < ny. Sonxr < my < ny. If we divide this by n > 0, we get
T < 70 <y. 70 s arational number. O

Uniqueness of Least Upper Bound: Assume F C R is non-empty and
bounded above. Then E has only one least upper bound.

Proof. Assume b,V are two least upper bounds for E.
(i) b=sup F and ¥’ is an upper bound for £ = b <V
(ii) ¥’ =sup E and b is an upper bound for £ =0 <b
Then b =1V O

1.17 Fact. Let £ C R be non-empty and bounded above and let a € R.
Then

a=supl < (i) VreFE, <«

and
(ii) Given any ¢ > 0, Jy € E such that a —e <y

1.2 Extended Real Numbers

In the set of extended real numbers we consider the set R U {—o0, +00}.
Preserve the order of R and Vx € R, set —oo < +o00. This way every non-
empty subset F of R U {—o00,+00} has a least upper bound and greatest
lower bound in RU {—o00,400}. For example, if E = N, then sup £ = +oc.
Also for x € R, we define the following

r+00=400, z+(—0)=-00, —=—=0

If x > 0, we define z - (+00) = 400 and z - (—o0) = —00
If z <0, we define x - (+00) = —o0 and z - (—00) = +00

0 - (Foo) is undefined.



1.3 The Complex Field
Let C denote the set of all ordered pairs (a,b) where a,b € R. We say
(a,b) =(c,d) < a=cand b=d
Let © = (a,b), y = (¢,d) € C. We define
r+y=(a+c,b+d) and z-y= (ac—bd,ad+ bc)
Under these operations C becomes a field with (0,0), (1,0) being the zero

element and multiplicative unit.
Define ¢ : R — C by ¢(a) = (a,0). Then

¢la+c) = dla+c,0) = (a,0) + (¢,0) = ¢(a) + ¢(c)
¢(ac) = (ac,0) = (a,0)(c,0) = ¢(a) - ¢(c)

¢ is 1-1 (one-to-one), ie. if a # a’ then ¢(a) # ¢(a’). This way we can
identify R with the subset {(a,0) : a € R} by means of ¢.
Let i = (0,1). Then % = (0,1) - (0,1) = (—=1,0) = ¢(—1). Also if (a,b) € C,
then

¢(a) +ip(b) = (a,0) +(0,1)(b,0) = (a,0) + (0,b) = (a,b)
If we identify ¢(a) with a then we identify (a,b) with a + ib. So C is the set
of all imaginary numbers in the form a + ib where a,b € R and 2 = —1.
[fz=x+iyeC, x,y € R we define
zZ = x — iy (Conjugate of z)
xz = Re z (Real Part of 2)
y = Im z (Imaginary Part of z)

If z,w € C, we have

247z z—7Z
, Imz= -
2 21

z+w=2zZ+w, zZw=72z-w, Rez=

Since 2z = r?+y* > 0, we define the modulus of z as |z| = V2Z = /22 + 32.
1.18 Proposition. Let z, w € C. Then

(a) 2#£0=|z|>0and z=0= |2/ =0

(¢) |zw] = |z]jw]



(d) |Re z| < |z| (i.e. |z| < /2% +y?)
(e) |z4+w| < |z|+ |w| (Triangle Inequality)

Proof of (e).

|z +w)? = (z+w)(z+w)=(z+w)(Z+w0)
= 2Z + 20 + wZ +ww = |z|* +2 Re(zw) +|w|?
(zw)
2Re(= <Jzal=llul

< [2* + 20z [w] + [w]* = (|2] + [w])*

So |z +w|* < (Jz| + |w])?. If we take positive square root of both sides, we
get [z + w| < |2] + |w]. O

1.19 Theorem (Cauchy-Schwarz Inequality). Let a;,b; € C where j =
1,2,...,n. Then
2 n n
< (Srr) (o)
j=1 Jj=1
Proof. Let us define

PE ST SR oY
j=1 j=1 J=1

We have B > 0. If B = 0, then all b; = 0. Then inequality becomes 0 < 0.
So assume B > 0. Then

n
E a;b;
=1

n

0< > |Baj—Cbf = (Ba; - Cb;) (Ba; — C' )
=1 =1
=  (B|aj|* — BCa;b; — CBbja; + |C[*|b,]?)
=1
= B?*A - BCC -~ CBC+|C|*B
—— =~
B|C|? IC|*B
~ (45— (CP)
So 0 < B(AB —|C]?) and since B > 0, we have AB — |C|?> > 0. Then
C? < AB. .

10



Replacing b; by b; and using Z = 2, |Z| = || we get

() ()

If a; > 0, b; > 0 are real numbers then

($4) =(£) (£

n

> b

J=1

11



2 Sets And Functions

2.1 General

Let X and Y be two non-empty sets. A function f: X — Y is a rule which
assigns to each z € X a unique element y = f(z) in Y.

2.1 Example. Given = € R, consider its decimal expansion in which there

is no infinite chain of 9’s. z = %: is represented as 0.25000 - - - instead of

0.24999 - - - Let y = f(x) be the fortyninth digit after the decimal point. We
have f: R — {0,1,2,...,9}.

2.2 Definition. Let f: X — Y, A C X. We define the image of A under
f astheset f(A) ={y €Y : 3z € Asuchthat y = f(z)}. Let BCY. We
define the inverse image of B under f as the set f~}(B)={r € X : f(x) €

—1,4] then f~Y(B) = [-2,2]
—2,—1] then f~1(B) =10

2.4 Definition. Let f: X — Y be a function. Then we define
X: Domain of f and f(X): Range of f

If f(X) =Y, then f is called a surjection or onto.

If 1 # x9 then f(z1) # f(z2) (equivalently f(x1) = f(x9) = x; = x2) then
f is called one-to-one (1-1) or an injection.

If f is both an injection and a surjection, then f is called a bijection or a 1-1
correspondence.

Let f: X =Y ACX, BCY. We have
(a) f(f~(B)) Cc B. f(f~(B)) = B for all B < f is onto
(b) AC F(FYA). A= f(f~1(A)) for all A& fis 1-1

(c) f(A1NAg) C f(A1) N f(A2). f(A1NAg) = f(A1) N f(Ag) for all A,
and Ay < fis 1-1

12



(d) f(A1UAz) = (A1) U f(A2)
Proof of (b).
AcC fHf(A)
Let © € A and let y = f(z). Then y € f(A), ie. f(z) € f(A). So
z € f7H(f(A)) and A C f7H(f(A)).
A= f(f(A) forall A C X & fis 1-1

(«<): Assume f is 1-1. Show for all A C X, A = f71(f(A)), i.e. show
AC fH(f(A) and f71(f(A)) C A. So show f1(f(A)) C A. Let x €

J/

always true

Y f(A)). Then f(x) € f(A). Then 32’ € A such that f(x) = f(a').
Since fis 1-1, x =2'. Soz € A and f~1(f(A)) C A.

(=): Assume A = f71(f(A)) for all A C X. Show f is 1-1. Assume f is
not 1-1. Then there are z1,x5 € X such that z; # 2, and f(z;) =

f(x2). Let y = f(21) = f(x2). Let A = {x1}. Then f(A) = {y} and
Y f(A)) = {z1,29,...}. Then A # f71(f(A)). Contradiction. O

Let {A; : i € I} be an arbitrary class of subsets of a set X indexed by a set
I of subscripts. We define

UAi ={z: 2z € A, for at least one i € I}

el

ﬂAi:{x:meAi for every i € I}

iel
If I =0, then we define | J;.y 4; = 0 and (),.y A; = X. (If we require of an
element that it belongs to each set in the class and if there are no sets in the

class, then every element z € X satisfies this requirement.) If A C X we
define A® = {z: 2 ¢ A} complement of A.

c c
(U Ai> = ﬂ AY (m AZ) = U AY  (De Morgan’s Laws)
iel i€l i€l i€l
Let f: X =Y, let {A;,:i€ 1}, {B;j:je J} be classes of subsets of X and
f (UAz> :Uf(Ai) , (ﬂAz> Cﬂf(Ai)
iel iel iel i€l
f (U Bj) =UJr'my . (ﬂ B,-) =By

jeJ jeJ jeJ jeJ
For all B C Y we have

13



(a) f7H(BY) = (f71(B))"
(b) f(A)Y C f(AY) for all A C X & f is onto
(c) f(AY) C f(A)C forall AC X & fis1-1

Proof of (a). Let x € f~1(BY). Then f(x) € B®. Show z € (f~%(B))°.
Assume it is not true, i.e. x € f7Y(B) = f(x) € B. So f(z) € B°NB.
Contradiction. Thus, z € (f~1(B))°. So, f~1(BY) C (f~4(B))°. @

Let z € (f~YB))“. Show z € f~1(BY), i.e.

f(z) € BY. Assume it is
not true, i.e. f(x) € Bsox € f~1(B). Then, x € (

FB)C N F(B ):
Contradiction. So, (f~1(B))¢ c f~1(BY). v O

If f: X — Y is1-1 onto, then Vy € Y 3 unique « € X such that y = f(x).
Send Y — X. This way we get f~! : Y — X (the inverse function of f)

@) =avVee X, f(fTH(y) =y VyeY.

2.2 Countable And Uncountable Sets

Let € be any collection of sets. For A, B € € we write A ~ B (and say A
and B are numerically equivalent) if there is a 1-1 correspondence f : A — B.
~ has the following properties

(i) A~ A
(i) A~B=B~A
(ii) A~C=A~C
2.5 Example. A=N=1{1,2,3,...}, B=2N=1{2,4,6,...}. Then A~ B
by f: A— B, f(n) =2n.
2.6 Definition. For n = 1,2,3,... let J, = {1,2,3,...,n}. Let X # () be
any set. We say
e X is finite if dn € N such that X ~ J,.
e X is infinite if it is not finite.
e X is countable (or denumerable) if X ~ N.

o X is uncountable if X is not finite and not countable.

14



e X is at most countable if X is finite or countable.

2.7 Example. N, 2N are countable.

2.8 Example. Z = {...,-3,-2,-1,0,1,2,3,...} is countable. Define f :

N — 7Z as follows

N:

So we have

f(n)

L,
!
0

)

|

2
Ll
1

? 37

) _17

I3

_n=1
2

4
l
2

Y

I

5,
!
_27

if n is even

if n is odd

2.9 Example. Q" = {¢: ¢ € Q, ¢ > 0} is countable. Given q € Q*, we

have m,n € Z m > 0, n > 0 such that ¢ = .

List the elements of Q% in

m\n|l 2 3 4
T S
A A
2 15 35
N
s |11 1 %
A A
S

this order omitting the ones which are already listed before. Then we get the

following sequence

=~



Suppose X is countable, so we have 1-1, onto function f : N — X. Let
f(n) = x,. Then we can write the elements of X as a sequence

X = {.Il,ZL'Q, T3, . . }
2.10 Example. Q is countable. (Similar to the proof of Z is countable.)
2.11 Proposition. Let I be a countable index set and assume for every

i €1, A;is a countable set. Then [ J,_.; A; is countable. (Countable union of
countable sets is countable.)

il

2.12 Example. X = [0,1) is not countable. Every z € X has a binary
(i.e. base 2) expansion x = 0.z12223%4 - - - where each of x1, 29, x3,...1is 0 or
1. Assume X = [0,1) is countable. Then write its elements as a sequence.
X = {y*, 9% 93, ...}. Then write each of 4!, 4% 3>, ... in the binary expansion.

y' = 0.y1yay3 - -
y* = 0.yiysys - -
y* = 0.y3ysys - -

Define
0 ifyl =1 0 ify2=1 0 ifyr =1
1 = e 1 <2 = o 9 Zn = .
1 ify; =0 1 ifys =0 1 ify; =0
Let 2 = 0.212923-+- € [0,1). But 2 # y*, z # 2, ... Contradiction.

2.13 Example. [0,1], (0,1), R, (a,b) are all uncountable. They are all
numerically equivalent.

2.14 Example. f:(-%,2) — R and f(z) = tanz gives (—3,%) ~ R.

2.15 Theorem (Cantor-Schroder-Bernstein). Let X,Y be two non-empty
sets. Assume there are 1-1 functions. f: X — Y and g : Y — X. Then
X~Y.

16



2.16 Example. Let X = {(z,y): 0 <z <1, 0 <y < 1}. Then X ~ (0,1).
Define g : (0,1) — X by g(z) = (z,31).

Define f : X — (0,1) as follows: Given (z,y) € X, write X and Y in their
decimal expansion with no infinite chain of 9’s.

x=0.2120973--- and y=0.y1yoys3- -

Let
f(iﬁa y) = 0.21Y172Y273Y3 - * -

Then f, g are 1-1 so by the above theorem X ~ (0, 1).

17



3 Basic Topology

3.1 Metric Spaces

In R, R* = {(z1,...,2) : 71,..., 7% € R} we have the notion of distance.
In Ru d(%,y) = ‘LC - y‘
InR* 2= (x1,...,21), y = (Y1, ..., yx). We have

d(z,y) = /(21— 91)? + - + (2% — 41)?
3.1 Definition. Let X # () be a set. Suppose we have a function

d: XxX —R
——

{(x,y):zyeX}
with the following properties
(i) Vz,y € X, d(z,y) >0 d(z,y) =0 zx=y
(i) Yo,y € X, d(z,y) = d(y,x)
(ili) Vz,y,z € X, d(z,y) < d(z,z) +d(z,y) (Triangle Inequality)

d is called a metric and the pair (X, d) is called a metric space.

Proof of (iii). X =R*, d(x,y) = \/(z1 —y1)> + -+ + (x5 — yi)? then d sat-
isfies (i) and (ii). For triangle inequality, let z,y, 2 € R¥ be given. Then we
have

d(z,y)® =(z1 —y1)* + - + (26 — )
=((x1 = 21) + (21 = 9))* + -+ (2 — 2) + (2 — wp))?
=1 =2+ (@ — )+ (=) + o+ (e — )
+2[(21 — 21) (21 —y1) + -+ (@6 — 21) (26 — Y]
<(d(z, 2))* + (d(2,9))?
+2|(z1 — 21)(z1 — 1) + - 4 (2 — 21) (20 — )|
(0122 (- 20)?) 2 (21—t G )) 2
(from Cauchy-Schwarz inequality)
<(d(z,2))* + (d(z,9))* + 2d(z, 2)d(z,y)
<(d(z, 2) + d(z,y))* O
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3.2 Example.
1) X # () any set. Given any x,y € X let

1 ifx

(i) and (ii) are trivially true. Check (iii).

Proof of (iii). If d(z,y) = 0, then it is true as RHS > 0. If d(x,y) = 1, then
we cannot have RHS = 0. If RHS = 0 we have, d(z,2) = 0 and d(z,y) = 0.
That is x = z and z = y. So x = y. Then d(z,y) = 0. Contradiction. ]

This metric is called the discrete metric.
2) Let X =RF = {z = (21,...,7%) : 21, -+ , 71, € R}

di(z,y) = |z1 — yi| + 22 — yo + - + 21 — Y]
(i) and (ii) are trivially true. Check (iii).
Proof of (iii). Given z,y,z € R*

di(w,y) = |v1 — | + -+ |2 — vl
= |(r1 —21) + (21 —y)| + -+ (w6 — 21) + (21 — i)
<l|vy — 2|+ |21 =yl + -+ |z — 2] + 2 — yil
= dl({L‘,Z) +d1(27y) O

d; is called the ¢; metric on R¥.
3) X =R*

oo (2, y) = max{|zy =y, ., ok — yel}
(i) and (ii) are trivially true. Check (iii).

Proof of (iii). Given x,y,z € R¥

doo<x7y) = maX{":Cl - yl‘v R ‘xk - yk‘}
=l —y| (1<i<k)
= (@ — 2:) + (2 — yi)| < |zi — 2] + |20 — yil
< <

< doo(,2) + doo(2,y) O
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d. is called the £, metric on R*.

4) Let S be any fixed non-empty set. A function f : S — R is called bounded
if f(.S) is a bounded subset of R, i.e. there are two numbers A, B such that
Vse S, A< f(s) < B.

For example, f : R — R, f(s) = arctans is bounded, f(s) = vs?+ 1 is
unbounded.

Let X = B(s) = all bounded functions f : S — R. Let f,g € B(S), then
f — g is also bounded. We define

d(f,g) = sup{|f(s) —g(s)| : s € S}

Geometrically, it is the supremum of the vertical distances between the two
graphs (See Figure 1). (i) and (ii) are trivially true. Check (iii). We need the
following: Let A, B be two non-empty subsets of R that are bounded above.
Then, sup(A+ B) <supA+supB. A+ B={x+y:x€ A, y€ B}. Let
a=supA and b =sup B. Let z € A+ B be arbitrary. Then 3z € A, y € B
such that z = x +y. Then we have x +y < a+0b. Since z =z +y, 2 < a-+b.
So a+b is an upper bound for the set A+ B. Since supremum is the smallest
upper bound, sup(A+B) < a+b. In fact we have sup(A+B) = sup A+sup B.
Show sup(A + B) > sup A +sup B. Given ¢ > 0, 3z € A and Jy € B such
thata —e <xandb—e <y. Thena+b—2c <x+y. Sincex+y € A+ B,
we have x +y < sup(A + B). Then a + b — 2¢ < sup(A + B). Here a, b,
sup(A + B) are fixed numbers, i.e. they do not depend on € > 0. We have
a+b < sup(A+ B)+2¢ true for every € > 0. Then we have a+b < sup(A+B).
If it is not true, then a + b > sup(A + B). Let ¢ = “H’+"(A+B) then 6 > 0.
So we have

a+b<sup(A+ B)+2§
a+b—sup(A+ B)
2

<sup(A+ B) +

a+0b <sup(A + B)
2 2

Contradiction.

Proof of (iii). Given f,g,h € B(S5), let

C=A{[f(s) —g(s)| : s € 5}
A={|f(s) = h(s)]: s € 5}
B ={lh(s) —g(s) : s € 5}
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Then sup C' = d(f, g), sup A = d(f, h) and supB = d(h, g). Let € C. Then
ds € S such that x = |f(s) — g(s)|. Then

z=[f(s) —g(s)|
= [(f(s) = h(s)) + (h(s) — g(s))]
< |f(5) = )|+ [b(s) ~ 9(5)
=y+z€A+B

So Vx € C, there is an element u € A + B such that x < u. Then, sup C' <
sup(A + B) <sup A +sup B. That is, d(f,g) < d(f,h)+d(h,g). O

3.3 Definition. Let (X, d) be a metric space, p € X and r > 0. Then

The open ball centered at p of radius r is defined as the set
B(p) ={r € X :d(z,p) <r}
The closed ball centered at p of radius r is defined as the set

Bylp] ={r € X :d(z,p) <7}

3.4 Example.
1) X =Rk dy(z,y) = \/(x1 — 1) + -+ + (xx — yr)?. (See Figure 2).

2) X # (), d: discrete metric. Then

ifr<1 ifr<1
BT@):{E} ifril BTH:{;]?} ifril

3) X = R* with ¢; metric d;. Let X = R% p = (p1,p2), * = (21, 23).
Then |x1 — pi| + |22 — p2| < 7. If p1 = po = 0 we have |x1| + |xo| < 7.
(See Figure 3).

4) X = RF with £, metric dy,. Let X = R? p = (0,0), z = (71, 79).
Then max{|xy|, |za|} < 7. (See Figure 4).

5) X = B(S) with sup metric. Let S = [a,b]. Then B,(f) is the set of all
functions g whose graph is in the shaded area. (See Figure 5).
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3.5 Definition. Let (X, d) be a metric space and E a subset of X.

1) A point p € E is called an interior point of E if 3r > 0 such that
B,(p) C E. (See Figure 6).

2) The set of all interior points of F is called the interior of E. It is
denoted by int E' or E°. We have int E C E. (See Figure 7).

3) E is said to be open if int E = E, i.e. if every point of F is an interior
point of E, i.e. Vp € E 3r > 0 such that B,(p) C E. (See Figure 8).

3.6 Proposition. Every open ball B,(p) is an open set.

Proof. Let ¢ € B,(p). Show that ds > 0 such that B(q) C B,(p). Since
q € B.(p) we have d(q,p) < r. Sor —d(q,p) > 0. Show Bs(q) C B.(p). Let
———

let this be s

x € Bs(q), i.e. d(z,q) < s. Then

d(z,p) < d(z,q) + d(q,p)

<s+d(q,p)
<r—d(q,p)+d(q,p)
<r
So z € B,(p). O

4) Let p € X. A subset N C X is called a neighborhood of p if p € int N.
(See Figure 9).

B,(p) is a neighborhood of p or B,.(p) is a neighborhood of all of its
points.

5) A point p € X is called a limit point (or accumulation point or cluster
point) of E if every neighborhood N of p contains a point ¢ € E with
q # p. (See Figure 10).

6) A point p € E is called an isolated point of E if p is not a limit point
of E, i.e. if there is a neighborhood N of p such that N N E = {p}.

3.7 Example. Let X =R, £ = {1, %, %, }L, ..} d(zyy) = |z — y|. Isolated
points of E are 1, %, %, ;11, ... E has only one limit point that is 0. Given any
open ball B,(0) = (—r,r), find n € N such that + < n. Then z = + €

B,(0) N E and z # 0.
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7) E'is the set of all limit points of E. We define E = EUFE'. E is called

the closure of E.

We have p € E < for every neighborhood N of p we have N N E # (.

8) E is closed if every limit point of E is an element of F, ie. E' C E,

ie. E=E. (See Figure 11).

9) Eis perfect if E is closed and has no isolated points. (See Figure 12).

10) E is bounded if 3m > 0 such that Vz,y € E d(x,y) < m. (See Fig-

ure 13).

11) Eis dense in X if E = X, i.e. Vp € X and for all neighborhood N of

p we have NN E # ().

3.8 Example. Let X =R, F = Q. We have Q = R. Given p € R and given
a neighborhood B,.(p) = (p — r,p + r), find a rational number x such that
p—r<z<p+4r. Sozx€ B.(p)NQ.

3.9 Theorem. E is open < E¢ is closed.

Proof.

(=):

Let E be open. Show that every limit point p of E is an element of E°.
Assume it is not true. Then E¢ has a limit point pgy such that py ¢ E©.
Then py € E. Since F is open 3r > 0 such that B,(py) C E. Also
since py is a limit point of E¢, every neighborhood N of py contains a
point ¢ € E such that ¢ # po. Since B,(py) is also a neighborhood
of py we have that B,.(py) contains a point ¢ € E® such that ¢ # po.
Then q € B,.(py) C E but also ¢ € E€. Contradiction.

: Let E¢ be closed. Show that every point p in E is an interior point.

Let p € E be arbitrary. Since p ¢ E°, p is not a limit point of E°.
Then p has a neighborhood N such that N does not contain any point
q € EY with ¢ # p. Then NN E® = ) so N C E. Since N is a
neighborhood of p, Ir > o such that B.(p) C N. So B,(p) C E. O]

3.10 Theorem. p is a limit point of £/ < every neighborhood N of p contains
infinitely many points of F.

Proof.
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(«<): Trivial.

(=): Let p be a limit point of £ and let N be an arbitrary neighborhood of
p. Then 3r > 0 such that B,(p) C N.
d¢; € B.(p) N E such that ¢; # p. d(q1,p) > 0. Let i = d(q1,p) <.

3¢ € By, (p) N E such that ¢o # p. d(qz,p) < r1 = d(q1,p). Then
@2 # q1- d(q2,p) > 0. Let o = d(qo,p) < 11.

Continue this way and get a sequence of points q1,¢2,q3,...,qn, ... in
E such that ¢; # g; for i + j and also each ¢; # p and ¢; € B,(p). O

3.11 Corollary. If F is a finite set then E has no limit points.

3.12 Theorem. Let £ C X. Then
(a) E is a closed set.
(b) E=FE < E is a closed set.

(c) E is the smallest closed set that contains E, i.e. if F'is any closed set
such that &/ C F' then & C F\

Proof.

(a) Show (E)® is an open set. Let p € (E)°. Then 3r > 0 such that
B.(p) N E = 0. This means B,(p) C E°. Show that actually B,(p) C
(E)C. If not true, 3¢ € B,(p) such that ¢ ¢ (E)°, i.e. ¢ € E. Then for
every neighborhood N of ¢ we have N N E # (). This is also true for
N = B,(p), i.e. B.(p) N E # (. But B.(p) N E = (). Contradiction. So

B,(p) C (E)“.

(b)(=): E is closed by (a) so E is closed.

(«): Let E be closed. Then E is contains all of its limit points, i.e.
E'CE, E=FEUE CFE. Since E C FE is always true, we have
E=FE.

(c) Let E be given and F be a closed set such that £ C F. Show E C F.
et pc E=FUEFE. Ifpe Ethenp e F. If p€ E showp € F.
Given any neighborhood N of p, N contains infinitely many points of
E so N contains infinitely many points of F', i.e. p € F' C F. O]

Basic properties: Let (X, d) be a metric space.
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1) The union of any collection of open sets is open.

)
2) The intersection of a finite number of open sets is open.
3) The intersection of any collection of closed sets is closed.
4) The union of a finite number of closed sets is closed.
5)
6)
) E
)

8

E is open < EC is closed.
Eisclosed & E=E.

is the smallest closed set that contains F.
E is open & E =int E.

9) int E' is the largest open set that is contained in F.
3.13 Example. Intersection of infinitely many open sets may not be open.

Let X =R, d(z,y) = |z —y|. Forn =1,2,3,... let E, = (—+ %) All
E,’s are open but (), E,, = [0, 1] is not open.

3.14 Proposition. Let ) # E C R be bounded above. Let y = sup E. Then
ye k.

Proof. Let N be an arbitrary neighborhood of y. Then Jr > 0 such that
B,.(y) C N. y —r cannot be an upper bound for E. Then 3z € E such that
y—r <z. Also,z <y <y+r. Soy—r <z <y+r,ie z € B.(y) =z € N.
Soxe ENN,ie. ENN #0. O

3.2 Subspaces

3.15 Definition. Let (X, d) be a metric space and Y # () be a subset of X.
Then Y is a metric space in its own right with the same distance function.
In this case we say (Y, d) is a subspace of (X, d).

3.16 Example. X =R? Y = {(2,0) : x € R}. Let E = {(2,0): 1 <z <
2}. Then E CY so F C X. As asubset of Y, F is an open set. As a subset
of X, E is not an open set. Let E C Y C X. We say E is open (closed)
relative to Y if E is open (closed) as a subset of the metric space (Y, d).

E is open relative to Y < Vp € E 3r > 0 such that BY (p) C E.
———r
BX(p)nY

E is closed relative to Y < Y \ E is open relative to Y.
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3.17 Theorem. Let ¥ CY C X. Then

(a) E is open relative to Y < there is an open set F' C X such that

FE =

FNnY.

(b) E is closed relative to Y < there is a closed set F' C X such that

B =

Proof.

(a) (=):

FnY.

Let E be open relative to Y. Then Vp € E Jr, > 0 such that
BX(p)NY C E. Let F = J,cp BY(p). Then F is an open set in
X. Show FNY = FE.

FAY = (UBé@)) ny = (Bfg(p)mY) CE
—_—

pEL peE

peEE

CFE for all p

Conversely, let pg € E. Then pyg € Y since E C Y. Then py €
Bfio CF.SopyeYNF.

: Assume F = FNY where ' C X is open in X. Let p € E.

Then p € Y and p € F. Since F is open in X, dr > 0 such that
BX(p) C F. Then BX(p)NY C FNY = E.

: Let E C Y be closed relative to Y. Then Y \ E is open relative to

Y. So there exists an open set A C X such that Y\ E=ANY.

Then E=Y\(Y\E)=Y\(ANY)=(ANnY)’NY = (A°U

YO)NY = (A°nY)Uu(Y9NY) = A°NY. AC is closed in X
—_——

0
and we may call it F'.

: Assume £ = FNY where F' C X is a closed set. Then Y \ E =

Y\(FNY)=YN(FNY)’=YN(FCuUY®)=Yn F° is
open in X
open relative to Y. O

3.3 Compact Sets

3.18 Definition. Let (X, d) be a metric space and E be a non-empty subset
of X. An open cover of X is a collection of {G; : i € I} of open subsets G;
of X such that E C |J,.; Gi.
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19 Example X =R, d(z,y) = |z —y|, E = (0,1). For every z € E let
= (=1

3.
Gy ). Upep Go = (=1,1) D E. So {G, : v € E} is an open cover of
E.

3.20 Example. X = R? with dy and £ = By(0). Forn € N let G,, =
B (0). UyZ; Gn = E. So {G, : n € N} is an open cover of E.

3.21 Definition. A subset K of a metric space (X, d) is said to be compact
if every open cover of K contains a finite subcover, i.e. given any open cover
{G; :i € I} of K, we have that Jiy,...,i, € I such that K C G;, U---UG;,.

3.22 Example. X =R, d(z,y) = |xr —y|. F = (0,1) is not compact. Take
I =FE=(01). Forozel, G, = (-1Lz). U, G- = (-1,1) D E. So,
{G, : x € I} is an open cover for E. This open cover does not have any
finite subcover. Assume it is not true, so assume z1,...,z, € E such that
Gy U---UG,, D FE. Let x;, = max{zy,...,2,}. Then (0,1) C (—1, %) but
x, € E=(0,1), ie. 2 <1. Let z = 2. Then z € E but z ¢ (—1, ).

3.23 Theorem. Let K C Y C X. Then K is compact relative to Y < K
is compact relative to Y.

Proof.

(=): Assume K is compact relative to Y. Let {G; : i € I} be any collection of
sets open relative to X such that | J,.; G; O K. Then {YNG, :i € I} is
a collection of sets open relative to Y and K=KnY C (Uzel )ﬂY =
Uie; (Y NGy). So {Y NG; : i € I} is an open (relative to Y') cover
of K. Since K is compact relative to Y, Jiy,...,i, € I such that
KcYnG,)u---u(YnG;,). Then K CG,U---UG,,.

(«<): Let K be compact relative to X. Let {G; : ¢ € I} be an arbitrary
collection of sets open relative to Y such that K C J,c; Gi. Then we
have GG; = Y N E; for some open subset F; of X. Then K C Uie[(y N
E;) C U,e; Ei- So {E; :i €1} is an open cover of K in X. Since K is
compact relative to X, Ji1,...,4, such that K C E;, U---UE; . Then
K=KnYC(E,NY)U---U(E;, NY)=G;,U---UG,.. O

3.24 Theorem. If K C X is compact then K is closed.
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Proof. We will show K¢ is open. Let p € K¢ Show Ir > 0 such that
B.(p) C K¢ Vq € K (since ¢ # p). d(q,p) > 0. Let

Vq = BTq<p) Wq = qu <Q)

Then V, N W, = 0. Find V; and W, Vg € K K C |J,cx W,. The collection
{W, : ¢ € K} is an open cover of K. Since K is compact, 3¢1,...,¢, € K
such that K C W, U---UW, . Let V=V, N---NV, . Then V is an open
set and p € V. If ry = min{r,,..., 7, } then V = B, (p). Show V C K.
If it is not true, then 32 € V but z ¢ K¢, ie. 2 € K. Then z € W, for
some i € {1,...,n}. z € V CV, (the same i). So z € W, NV, = 0.
Contradiction. O

3.25 Theorem. Closed subsets of compact sets are compact.

Proof. Let FF C K C X where K is compact and F' is closed. (relative to X

and relative to K are the same since K is closed.) Let {G; :i € I} be a set

open in X such that £ C {J,.; Gi- Then {G; : i € I}U{F“} is an open cover

of K. Since K is compact, Jiy,...,i, € I such that K C G;, U---UG; UFC.

Then F = FNK C (G;,NF)U---U(G;, NF)U(F’ N F) C G, U---UG;,. O
~——

0

3.26 Corollary. Let I, K C X where K is compact and F' is closed. Then
FN K is compact.

3.27 Theorem. Let {K; : i € I} be a collection of compact subsets of X
such that the intersection of every finite subcollection of {K; : i € I} is
non-empty. (e Ki # 0.

Proof. Assume the contrary. (,.; K; = 0. Fix one of these sets, /;,. Then

c

Kiy 0 (Misy K1) = 0. Then Ky © (Mo, K3) 5 ier Ky © Uy, KC- S
{K¢ :i+#iy} is an open cover of K;,. Since K, is compact, Jiy, ..., such
that K;, C Kg U---J Kg. But K;, N Ky, N---NK;, = 0. This contradicts

~~
(Kil ﬂ---ﬂKin)c

the hypothesis. O

3.28 Corollary. Let {K, : n € N} be a sequence of non-empty compact
sets such that K3 D Ky D K3 D -++ Then (02, K,, # 0.

28



3.29 Example. X =R, d(z,y) = |z —y|, E, = [n,+0) ={z: 2 €R, = >
n}, n=1,23, ... Then E,’s are closed, F, # 0 and £} D Ey D E3 D -
We have (2, E, = 0.

3.30 Theorem (Nested Intervals). Let {I, : n = 1,2,...} be a sequence
of non-empty, closed, bounded intervals in R such that Iy D I, D I3 D ---
Then (2, I, # 0.

Proof. Let I, = [a,,b,] and a, < b,. That is, a; < as < ag < --- and
<o < b3 < by < b;. We also have that Vn Vk a,, < b,. Given n,k € N

(i) If n =k then a, < b, = by.
(ii) If n > k then [, C Iy. Then a,, € I,, C Iy = ay < a,, < by.
(iii) If n < k then I, C I,,. Then by € I}, C I,, = a, < by < by,.

Let £ = {ay,a9,as,...}. Then E # () and FE is bounded above. Let z =
sup E. Then a,, < z for all n.

Claim: =z < b,, Vn.

Assume it is not true. Then 3n such that b,, < X. Then b,, cannot be an
upper bound for E. So there is an element ay, € £ such that ay, > b,,.
Contradiction. So Vn we have a,, < x <b,,ie. x € I,. Sox €& ﬂzozl I,. O

3.31 Remark. If also lim, (b, — a,) = 0 then (2, I,, consists of only
one point.

3.32 Definition. Let a; < by, ..., a; < by be real numbers. Then the set of
all points p = (x1,...,2;) € R¥ such that a; <z < by,...,a, < 25 < by is
called a k-cell in R*. (See Figure 14).

3.33 Theorem. Let k be fixed. Let {I,} be a sequence of non-empty k-cells
such that I; D Iy D I3 D -+ Then (2, I, # 0.

3.34 Theorem. Let K be a compact subset of a metric space (X, d). Then
K is bounded.

Proof. Fix a point py € K. X = |Jo°, Bu(po) and K C U2, Bu(po)-
So dny,...n, € N such that K C By, (po) U -+ U By, .(po). Let ng =
max{ny,...,n.}. Let p,q € K, thenp € By, (po) and q € B, (po) where n;, n;
are one of ny, ..., n,. Wehave d(p, q) < d(p,po)+d(po,q) < ni+n; <2ny. O
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3.35 Theorem (Heine-Borel). A subset K of R* is compact < K is closed
and bounded.

Proof.
(=): True in all metric spaces.

(«<): Let K C R* be closed and bounded. Since K is bounded, there is a
k-cell I such that K C I. I is compact, so K being a closed subset of
the compact set I is compact. O

3.36 Theorem. Every k-cell is a compact set in R¥.

Proof. Let E C R* be a k-cell. Then there are real numbers
ai, by, ag, by, ..., ag, b, such that a; < by, as < bg,...,a; < b, and

E:{p:('rlv"'axk’)eRk:alleébla--'aakgxkgbk}

Ifay =by,a0 = by, ..., a; = by then E consists of one point which is compact.
So assume there is at least one j, 1 < j <k, such that a; < b;. Let

§=/(b1 —a1)?+ (b —az)> + -+ + (b, — ay)?

Then 6 > 0. Assume E is not compact. So there is an open cover {G, : a €
A} such that no finite subcollection of G,’s covers E. Let

Cli—i—bi
C; =
2

We divide each side of E into two parts and this way we divide E into 2¥
subcells. Call them Q1,Q2,..., Q2. Then at least one of these @);’s cannot
be covered by finitely many sets, G,’s. Call this @; E;. For all p,q € E we
have ds(p,q) < § and for all p,q € Ey, da(p,q) < g. Next divide E; into 2F
subcells by halving each side and continue this way. This way we obtain a
sequence {E,} of k-cells such that

(a) EDFEDFEy;yDE3D -
(b) E, cannot be covered by any finite subcollection of {G, : a € A}
(c) For all p,q € E,, da(p,q) < 2

on
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By (a), (o_y En # 0. Let p* € (,—, E,. Then p* € E. Since {G, : a € A} is
an open cover of F, there is an oy € A such that p* € G,,. Since G, is open,
there is r > 0 such that B,(p*) C G4,. Find a natural number n, such that
8 <2m je. 5% <r. Now we show that E,, C Gay. p* € Ep,. Let p € Ep,
be an arbitrary point. By (c), da(p, p*) < Qio. Also, 2%0 <. Sody(p,p*) <r.
So p € B,(p*) C Gu,. Thus, p € E,;, = p € Go,. S0 E,; C Gp,. This means
E,, can be covered by finitely many sets from {G,, : a € A} (indeed just by

one set). This contradicts (b). O

3.37 Theorem. Let (X,d) be a metric space and K C X. Then K is
compact < every infinite subset of K has a limit point in K.

Proof.

(=): Let K be compact. Assume claim is not true. Then there is an infinite
subset A C K such that A has no limit point in K. So, given any
point p € K, p is not a limit point of A. So there is r, > 0 such
that B, (p) contains no point of A different from p. The collection of
{B,,(p) : p € K} is an open cover of K. Since K is compact, there are
P1,D2, -+ Pn € K such that K C B,, (p1) U By, (p2) U---U B, (pn).
Since A C K and A is an infinite set, one of the open balls on the right
hand side must contain infinitely many points of A. Contradiction.

(<): Omitted. O

3.38 Theorem (Bolzano-Weierstrass). Every infinite, bounded subset E of
R* has a limit point in R¥.

Proof. Since E is bounded, there is a k-cell I such that £ C I. Then since
I is compact, the infinite subset E of I has a limit point p € I C R*. O

3.4 The Cantor Set
Let us define
Ey=10,1

ol
{ o2t

e}
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Continue this way by removing the open middle thirds of the remaining
intervals. This way we get a sequence Fy D Fy D E3 D --- D E, D --- such
that FE, is the union of 2" disjoint closed intervals of length 3% We define

C = ﬂ E,
n=1
which is called the Cantor Set.

Properties of C
(1) C is compact

(2) C#0
(3) intC =0
(4)

(5) C is uncountable

C is perfect

Proof of (3). Assume intC # (). Then there is a non-empty open interval
(a,3) C C and C does not contain intervals of the form (25t 3%42)  Since
they are removed in the process of construction. Assume C contains («, [3)
where o < 3. Let a > 0 be a constant which will be determined later. Choose

m € N such that %= < 3, i.e. 3%” < ﬁTTO‘ Let k be the smallest integer

B—a
such that o < 2 je. @3%=1 < k. Then k — 1 < 2¥2=1. Show %2 < 3.
3" -1 3m—1
k1< 2 k<2 +1
3 3
Show
a3 —1 3m3 — 2
1< ——
3 + 3
3m3_2  3mg —1
1< —
3 3
mG—a)—1
PR

Now we have
3m(B—a)—1 - 3Mazm —1  a—1
3 3 3
So let ”’T_l > 1,1i.e. a > 4. Choose a = 4. This way we have that
3k+1 3k+2 3k+1 3k+2
C
( am ) gm )C(a,ﬁ):( am " 3m )c
Contradiction. O
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3.5 Connected Sets

3.39 Definition. Let (X,d) be a metric space and A, B C X. We say A
and B are separated if ANB = and AN B = (.

3.40 Example. X =R, A = Q, B = R\Q. We have ANB = RN(R\Q) # 0.
Then Q, R\ Q in R are not separated.

3.41 Definition. A subset ' C X is said to be disconnected if there are two
non-empty separated sets A, B such that £ = AU B.

A subset £ C X is said to be connected if it is not disconnected, i.e. there
are no non-empty separated sets A, B such that £ = AU B.

3.42 Theorem. A non-empty subset £ C R is connected < F is an interval.

Proof. An interval is defined as follows: Whenever x < z and x,z € E for
all y with x <y < 2z we have y € FE.

(=): Let E C R be connected. Assume E is not an interval. So there are
two points z, z € E with x < z, there is y with z < y < z and y ¢ E.
Let A= FEN(-00,y), B=FEN(y,+0). © € A, z € B. So A # 0,
B #0. Show ANB=0,ANB=0. AC (—00,y) = A C (—00,y].
So AN B C (—00,y) N (y, +00) = (. Similarly we have AN B = {.

AUB = (EN(—o0,y)) U(EN (y,+0))
=EN((—00,y)U(y,+0)) =F sincey ¢ E

R\‘{,y}

(«<): Omitted. O
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4 Sequences And Series

4.1 Sequences

Let (X, d) be a metric space. A sequence in X is a function f: N — X. If
pn = f(n), we denote this sequence by (p,) or {p,}.

4.1 Example. X = R?, p, = <ﬂ ﬂ) where n = 1,2,3,... Then

n ' n

b1 = (O’_l)
B —-11
b2 = (775)
B -2 -1
b3 = <?7?)

4.2 Definition. We say the sequence {p,} converges to p € X if for every
£ > 0 there is a natural number ny (depending on € > 0 in general) such that
for all n € N with n > ny we have d(p,,p) < ¢, i.e. p, € B.(p). We write

Pn — pOT 1iHln—>c>o Pn =P
pn — p < every neighborhood of p contains all but finitely many terms p,,.
If {p,} does not converge to any p € X, we say {p,} is divergent.

4.3 Example. X = R? p, = <1_—” ﬂ) p = (—1,0). Show p, — p. Let

n’ n
e > 0 be given. Let ng be any natural number such that ‘/?5 < ng. Let n be
any natural number such that ng < n.

= (152 -0) (G o)

34



4.4 Remark. {z,} = {1} converges to z = 0in (R, |-[), but it is divergent

in ((072)7 | ’ |)

4.5 Definition. We say that the sequence {p,} is bounded if the set E =
{p1,D2,P3, ...} is a bounded subset of X i.e. there is a constant M > 0 such
that for all p;,p; € E we have d(p;,p;) < M.

4.6 Theorem.
(a) Let {p,} be a sequence such that p, — p and p, — p’. Then p =p'.
(b) If {p,} is convergent then {p,} is bounded.

(c) Let E # ) be subset of X. Then p € E < there is a sequence {p,}
contained in F such that p, — p.

Proof.

(a) Let p, — p and p, — p’. Assume p # p'. Then d(p,p’) > 0. Let g9 =

d(pT’p/) then €9 > 0. We have p,, — p so there is n; € N such that for all
n > ny we have d(pp,p) < €9. We also have p, — p’ so there is ny € N
such that for all n > ny we have d(p,,p’) < 9. Let ng = max{ny, ny}.
Then ng > ny = d(pn,y,p) < €0 and ng > ny = d(pn,,p’) < €o. Then
3e0 = d(p,p") < d(p,pny) + d(Pny, ') < €0 + €0 = 2e0. So 3ep < 2.
Since g > 0, this cannot be true.

(b) Let p, — p. For e =1 > 0, there is ny € N such that for all n > ny we
have d(p,,p) < 1. If i, j > ng, then d(p;, p;) < d(p;,p) +d(p,p;) <1+
1 =2. Let K = max{1,d(p1,p), ..., d(pny—1,p)}- Then for all n € N we
have d(p,,p) < K. Forany i, j € N, d(p;, p;) < d(p;, p)+d(p, p;) < 2K.

(c)(«): {p.} in E such that p, — p. Show p € E. Given r > 0 we have
no € N such that for all n > ng, d(pn,p) < 1. So p,, € B,(p) N E.
So B.(p)NE #10. Sop € E.

(=): Let p € E. Then for every r > 0, B.(p) N E # ().
Forr =1, find p; € Biy(p) N E
1
Forr:§, find py EB%(p)ﬂE

1
For r = —, find p, € Bi(p)NE
n n
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Then {p,} is a sequence in E. Given € > 0 let ny be such that
% < ng. Then for all n > ny we have d(p,,p) < + < n—lo <e. So

n

Pn — D- O

4.7 Theorem. Let {s,} and {t,} be sequences in R such that s, — s and
t, — t where s,t € R. Then

a) Sp+t, — s+t

b) For all constants c € R, ¢s,, —» ¢+ s

(
(b)

(c) spty, — s+t
(d) If s # 0 then - — -

Proof of (a). We have that

d(sp +tn,s+1) = sy +t,— (s+1)]
= [(sn = 8) + (tn — 1)
<sp — 8|+ [tn — t]

Given € > 0, let &’ = § > 0. We have s,, — s so there is n; € N such that
for all n > n; we have |s,, — s| < €. We also have t,, — t so there is ny € N
such that for all n > ny we have |t,, — t| < &’. Let ng = max{ny,ns}. Then
n>ng=n>n =|s,—s| <& andn>ny=n>ny=|t, —t| <e'. So
for all n > ng we have

d(spy +tn,s+1t) <|s, —s|+ |t — 1
< +e=2"=¢ O

Proof of (d). Let ¢y = ‘%l then €9 > 0. So there is n; € N such that for all

n > ny we have |s, —s| < gg. Let n > nq, |s| = |s— s, +5n| < |s—s5|+|sn] <

lsl 4 |sn|. So for all n > ny, ‘%' < |sp|. In particular for all n > ny, s, # 0

2
1 1 1

so - is defined. And also o < ‘?2' To show lim, .o -~ = %, let € > 0 be
given. Let & = @ > 0. We have s,, — s so there is ny € N such that for

all n > ny we have |s, — s| < &’. Let ng = max{ny,ns} and n > ng. Then

1 1

Sn S

5—58n| |5— sy

s-8, | |s|]$n|
g 1 g 2
—_— e — < —_— e —
Is| [sal [s] sl
_els)? 2

- = ]
2 s
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4.8 Theorem.

a) Let {p,} be a sequence in R* where p, = (27,...,27) and p =
1 k
T1,...,2;) € RE. Then p, — p < 2% — 21,28 — T9,...,27 — Ty,
1 2 k

(b) Let {p.}, {¢.} be two sequences in R* and {a,} be a sequence in R.
Assume p, — p, ¢, — ¢ in R¥ and oy, — ain R. Then p, + ¢, — p+¢
and o, p, — ap.

Proof of (a). We need the following: If ¢ = (y1,...,y,) € R¥ then for all
i=1,2,... .k

il SR+ R <Ll el T
vil> =yl <vi+ys+-+ui
yi+ s+ yp < (] + yel + -+ i)

Assume p, — p. Given € > 0, we have ng € N such that for all n > ny,
do(pn,p) < €. Let n > ng. Then

27 — | < /(@] = 20)2 4 (0F — 222+ (2f — 20)? = da(pn,p) < ¢

Th— x| < --- < g
|25 |

Conversely, assume 2" — z1, 2% — Zo,...,2} — . To show p, — p, let
Y, 1 s L9 ’ y Uk k )
e > 0 be given. Let ¢’ = £ > 0.

z? — 1 so we have n; such that for all n > ny, |2} — 21| <€’

xh — x9 so we have ny such that for all n > ng, |25 — 29| < &

zp — 1z so we have ny such that for all n > ny, |z} — x| < €

Let ng = max{ny,ns,...,n;}. For all n > ng

(o p) = £/ (3 — 21)2 + (2 — 2)2 + -+ (2} — 21)?
< Jaf = 1] + 25 = mo| + o+ o —
<e+e+..-4¢€
=ke' =¢ O
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4.2 Subsequences

4.9 Definition. Let {p,} be a sequence in X. Let {n;} be a sequence of
natural numbers such that n; < ny < ng < --- Then the sequence {p,, } is
called a subsequence of {p,}.

4.10 Example. {p1,ps, p7, P10, P23, - .-} is a subsequence of {p,}. n; = 2,
ne =3, n3 =17, ng = 10, ny = 23 and so on.

4.11 Proposition. p, — p < every subsequence of {p,} converges to p.

Proof.
(«<): Since {p,} is a subsequence of itself, p, — p.

(=): Let p, — p. Let {p,, } be an arbitrary subsequence of {p,}. To show
Dn, — D, let € > 0 be given. Since p,, — p, we have ny such that for all
n > ng, d(pp,p) < e. If k> ng then ngy > k > ng so d(pp,,p) <e. O

4.12 Remark. Limits of subsequences are limit points of the sequence.

n 'n

4.13 Example. X = R? and p, = <n+(71)”n+1 l)

2n+1 1
n 'n

) - @o

11
nis odd = p, = (—,—) — (0,0)

n n

n is even :>pn:(

So the sequence {p,} has limit points (2,0) and (0, 0).

4.14 Example. In X =R, z, =n + (—=1)"n + %

n

. 1
niseven = x, =2n+ — — 400
n

1
nisodd =z, =— —0
n

We do not accept +00 as a limit since 400 is not a member of R. So 0 is
the only limit point of the sequence {x,} but {z,} is divergent since it is not

bounded.
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4.15 Theorem.

(a) Let (X,d) be a compact metric space and {p,} be any sequence in X.
Then {p,} has a subsequence that converges to a point p € X.

(b) Every bounded sequence in R* has a convergent subsequence.

Proof.

(a) Case 1: {p,} has only finitely many distinct terms. Then at least one
term, say p, is repeated infinitely many times, i.e. the sequence {p,}
has a subsequence all of whose terms are p. Then the limit of this
subsequence is p = p,, € X.

Case 2: {p,} has infinitely many distinct terms. Then the set £ =
{p1,p2,p3, ...} is an infinite subset of the compact set X. So it has a
limit point p € X. Then p is the limit of a subsequence of {p,}.

(b) Since {p,} is bounded, there is a k-cell I such that {p,} C I. I is
compact, so by (a), {p,} has a subsequence that converges to a point
pel. O

4.3 Cauchy Sequences

4.16 Definition. Let (X, d) be a metric space. A sequence {p,} in X is
called a Cauchy sequence if for every € > 0 we have ny € N such that for all
n,m Z no, d(pnapm) <eé.

4.17 Example. In X =R

" cost
T, = / dt
t2
1

Then {z,} is a Cauchy sequence in R. Given n,m if n = m then z, = z,,
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$0 d(Tp, ) = |Tn — zm| = 0 < e. If n # m, assume m < n.

d(xy, — ) = X0 — T

" cost ™ cost
[t [t
1t 1t

"|cost cost |cost]
/7:n —2 dt We know 2 2 < t2
"1 1 1
< [ dt= -4+ =
m nom

<—§—<5
m N

Given € > 0, choose nyg € N such that % < ng. Then for all n,m € N with
ng < m <n we have d(z,,z,,) < €.

4.18 Example. X =R, z,, = /n. If n =m + 1 then

d(xn7xm) = ‘xm+1 - xm|

— VmF1- vl = Vm+1- vm

B N I
= VmE =) e
1 1

T Vmt it ym v

Given € > 0, choose ng € N such that 5 < ng. Then for all m > ny we have
d(Tpmi1, Tm) < €.

So the distance between successive terms gets smaller as the index gets larger
but this sequence {x,} is not a Cauchy sequence. For example, for ¢ = 1,
consider

d(xm,x3m+1) = |\/E— V 3m + ]_|
=V3m+1—vVm=vm+2m+1—+ym

ST
—vm>1

> vm+1
4.19 Theorem. Let (X, d) be a metric space.
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(a) Every convergent sequence in X is Cauchy.

(b) Every Cauchy sequence is bounded.

Proof.

(a) Assume p, — p. Show {p,} is Cauchy. Given € > 0 let ¢’ = 5 > 0.
Since p, — p, there is ny € N such that d(p,,p) < ¢’ for all n > ny.
Let n,m > ng. Then

A(PrsPm) < d(pn,p) +d(p,pm) <& +& =2 =¢

(b) Let {p,} be a Cauchy sequence in X. For ¢ = 1 there is ny € N
such that for all n,m > ng we have d(p,,pm) < 1. Let K =
max{1,d(p1,Png),- - -, d(Prg—1,Pn,)} and M = 2k. Then we show that
for all n,m € N, d(pn, pm) < M.

Case 1: n,m > ng. Then
AP, pm) <1< K <M
Case 2: n,m < ng. Then
d(pns pm) < d(pr; o) + d(Pros pm) < K+ K =M
Case 3: m < ng and n > ng. Then

A(Pr, Pm) < APy Prg) + d(Prg, Pm) <1+ K < K+ K =M O
—_—

<1 <K

Converse of (a) is not true in general.

4.20 Example. X = (0,1) = {x € R: 0 < z < 1} with d(z,2’) = |z — 2/|.
Tn, = 5. {x,} is a Cauchy sequence in X but {z,} has no limit in X.

4.21 Definition. A metric space (X, d) is said to be complete if every Cauchy
sequence in (X, d) is convergent to some point p € X.

4.22 Theorem.
(a) Every compact metric space (X, d) is complete.

(b) (R*,dy) is complete. ((R*,d;), (R¥,d,) are also complete.)
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Proof.

(a)

Let (X, d) be a compact metric space and let {p, } be a Cauchy sequence
in X. Then {p,} has a subsequence {p,, } which converges to a point
p € X. Show p, — p. Let € > 0 be given. Let ¢ = 5 > 0. {p,}
is Cauchy, so there is N7 € N such that for all n,m > N; we have
d(Pnypm) < €. pn, — p, so there is Ny such that for all & > Ny we

have d(py,,p) < €. Let N = max{Ny, No}. Then for all n > N

A(Pn, D) < APy Pry) + d(Ppy,p) < 26’ =¢

<! <e’

Let {p,} be a Cauchy sequence in R*. Then {p,} is bounded so there
is a k-cell I such that {p,} C I. (I,ds) is compact. Then by (a), {p,}
has a limit p € I C RF. O

4.23 Remark. S # (), B(S) all bounded functions f : S — R.

d(f,g) = sup{[f(s) —g(s)| : s € S}

(B(S),d) is complete.

4.24 Theorem. Let (X,d) be a complete metric space and Y # () be a
subset of X. The subspace (Y, d) is complete < Y is a closed subset of X.

Proof.

(:>):

Assume (Y, d) is complete and show Y is closed, i.e. Y CY. Letp € Y.
Then there is a sequence {p,} in Y such that p, — p. Then {p,} is
convergent in X. So {p,} is Cauchy in X. Since all p, € Y, {p,} is
Cauchy in Y. Since Y is complete, there is an element ¢ € Y such that
ppn—q. Thenp=¢q€Y.SopeY,ie Y CV.

: Assume Y is closed. Show (Y,d) is complete. Let {p,} be a Cauchy

sequence in Y. Then {p,} is a Cauchy sequence in X. Since (X,d) is
complete, there is p € X such that p, — p. Then p is the limit of the
sequence {p,}inY. Then p € Y. Since Y is closed, Y =Y. Sop €Y.
So (Y, d) is complete. O

4.25 Example. X = R*| Y = {(x,y) : * > 0, y > 0}. Then (Y,dp) is
complete.
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Monotone Sequence Property In R

Let {s,} be a sequence in R. We say

{sn} is increasing if 1 < 59 <53 <+ <5, < 8ppp <
{sn} is decreasing if s1 > s9 > 83>+ > 8, > Spyq > -
{sn} is monotone if {s,} is either increasing or decreasing.

4.26 Theorem (Monotone Sequence Property). Let {s,} be a monotone
sequence in R. Then {s,} is convergent < {s,} is bounded.

Proof.

(=): True for all sequences.

(<): We do the proof for decreasing sequences. Let s = inf{sy, s, s3,...}.
Show lim,, .. s, = s. Let € > 0 be given. Then s + ¢ cannot be a
lower bound for the set {si,s2,$3,...}. Then there is s,, such that
Spg < s+e Letn>ng. s—e<s5<s, <5, <s+e. Foralln>mng

s—e<s, <s+¢
—e< s, —8s<¢
|sp —s| < e
d(sp,s) <e O

4.27 Example. Let A > 0 be fixed. Start with any x; > 0 and define

> (
Tp == |2Tp-1+

2

Tp—1

A
) n=2234,...

Then lim,, oo 2, = VVA. We will show a9 > 23 > x4 > --- For n > 2

&l\)
!
'S
I

A2
(xi_l + . + 2A> —A

n—1

A2
(xi_l + 2 QA)

N N SN
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SoxiZAforalanQ. Sinceallxn>0,xn2\/ZforalanQ. For n > 2

> (=4 2)
Ty = Tpt1l =Ty — 5 | Tn + —

2 Tn
> (- 2)
= — I‘n——
2 Tn
122 — A
=_n >0
2 x, =

So x, > xp4q for all n > 2. So {x,}22, is decreasing and bounded. So
lim,, .o ©,, = x exists. Then we solve for . We have that

Tpy1 = %(In—Fﬁ)
l
vo= z(r+%)
Then
20 =o+ —
T
2=A

= VA

Since all x,, > 0, limit x cannot be negative. So = = VA.

4.4 Upper And Lower Limits

Let {x,} be a sequence in R.

We write lim,,_, z,, = +00 (or x,, — +0o0) if for every M > 0 we can find a
natural number ny (depending on M in general) such that for all n > ng we
have M < z,,.

We write lim,, o, ,, = —00 (or x,, — —00) if for every M < 0 we can find a
natural number ny (depending on M in general) such that for all n > ng we
have z,, < M.

In either case, we say {z,} is divergent.

4.28 Example. z,, = n+ + and lim, o 2, = +00. {z,,} is divergent.

4.29 Definition. Let {x,} be a sequence in R. Let E be the set of all
subsequential limits of {x,}. Then £ C RU {—o00, +00}.
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4.30 Example. z, =n+ (—1)"n + % Subsequential limits are +o00 and 0.
So E = {0, +o0}.

4.31 Definition. Let 2* = sup F and z, = inf F' (Considered in the set of
extended real numbers.)

x* is called the upper limit (or limit superior) of {z,} and it is denoted by

" =limsupz, = lim z,

n—00 n—00

x, is called the lower limit (or limit inferior) of {z,} and it is denoted by

r, = liminf z,, = lim =z,

n—0o0 n—o00

4.32 Example. The function IT : N x N — N defined by II(r, s) = 2"71(2s —
1), is 1-1 and onto. Let s be fixed. Ny = {2""1(2s —1) : r =1,2,3,...} =

r\s |1 2 3 4

1 /1 3 5 7
2 12 6 10 14
3 |4 12 20 28
4 |8 24 40 56

{2s — 1,2(2s — 1),4(2s — 1),...} Then for s # s, NyN Ny = 0. Also
U2, Ny = N. Define a sequence {z,} in R as follows: Given n € N, there is
a unique s such that n € N,. Define z,, = n‘ifl. What are the subsequential
limits of {z,} ? What are limsup,,_, , x, and liminf, . x, ?

n

If N, ={1,2,4,8,...} thenz,, = —— — 1
n e 1 {7 y Ty Oy } € n 1
If n e Ny ={3,6,12,24,...} then z, = 2n — 2
n en Ty

2 ) ) ) n 1

S

If <s={--}th n = n
neN {---} then x - 1—>s

So all 1,2,3,... are subsequential limits. Then we have {1,2,3,...} C E.
Then sup £ = +o0, i.e. limsup,,_,,, ©, = +00.
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Since z,, = o, S 2> 1=z, > 7 SO all z, > 3. So if x is a subsequential

limit of {z,} then 2 > 1. Can we have a subsequential limit 2 such that

%§x§1?nIfn€NSWheresZ2thenxn:nS—le2f—&zl. IfneN;

then x, = ;25 — 1. So 1 is the smallest subsequential limit of {z,}. Thus

liminf,,_, z, = 1.

Properties
(i) liminf, .. x, < limsup,_, . T,

(ii) liminfz, = limsupx, < lim, .z, = x (Here z € R or x = +o0 or
n—0oo n—oo

(. J
v~

call this x
r=—00)

(iii) Let x € R, i.e. x # Foo. We have that limsup,, .z, =z &
(a) For every £ > 0 there is a natural number ny such that for all
n>ng, T, <x+e¢
and
(b) For every € > 0 there are infinitely many n such that x — e < z,,
4.33 Theorem (Squeeze Property or Sandwich Property). Let {x,}, {y.},

{zn} be three sequences in R such that z,, <y, < z, for all n. Assume that
{z,} and {z,} are convergent and lim =, = lim z,. Then {y,} is convergent

n—oo
N

~
call this ¢
and lim,, o y, = c.

Proof. Given ¢ > 0

T, — ¢, so there is ny € N such that for all n > ny, |z, —c| <e¢

Zp — ¢, so there is ny € N such that for all n > ns, |2, —¢| < ¢

Let ng = max{ny,ny} and n > ny. Show |y, —c| < ¢

Ife<y,then |y, —c|=yp,—c<z,—c<|z,—c|<e

Ife>y,then |y, —cl=c—yp<c—z, <|c—x,| =z, — | <e O
Some Special Sequences In R

4.34 Theorem.

(a) If p > 0 constant then lim,_o & =0

(b) If p > 0 constant then lim, .o {/p = 1
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(¢) im0 ¥/n =1

(d) If p> 0 and « € R are constants then lim,,_ =0

n()é
(I+p)"
Note: This is usually expressed as polynomials tend to increase slower
than exponentials.

(e) If z is constant and |z| < 1, i.e. —1 <z < 1 then lim, o 2" =0

Proof of (b).
If p=1then /p =1 for all n, so lim, .. /p = 1.
Ifp>1letx, = 3/p—1 Then x, >0 for all n.

n(n —1)

2 n

p=1+z,)"=14nz,+

J/

TV
positive

Sop>1+nz, Sol0<uz, < 7%1. By sandwich property, lim,,_.. z, = 0.
Then ¢/p=1+xz, — 1.

If p <1 then {L/% — 1 by the previous case so {/p — 1. O]

Proof of (¢). Let x,, = {/n — 1. Then z,, > 0 for all n.

nn—1) 5 nn—1)(n—2)

n=(1+m,)"=1+ns,+ 5T+ 5 xp o+l
>0
nn—1) ,
> —7x
> 5 n
SonZ@xiiogxiS%:Oang % By sandwich theorem,
lim, oo, = 0. Then /n =1+ 1z, — 1. O

@

Proof of (d). If @ < 0 we have lim,, ity = 0. So assume o > 0. Fix a
natural number k such that o < k. Then for n > 2k

n n n n\*
_—

~
k terms
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(=0
n\ , nn—-1)---(n—k+1) ,
> =
Jp k! P
n\k k k—a,,«
(5) N L S L L
T P T P T T P
2kl 1 - n -0
pFontme T (1+p)
By sandwich property, we have lim,, . % = 0. O

4.5 Series

4.35 Definition. Given a sequence {a,} in R, the symbol >"°  a, is called
an (infinite) series. Given a series >~ a, we define the following sequence

{sn}

S1 — Qq
So = a1 + ao

S3 = a1 +as+ as

Sn=a1+ay+ -+ ay

{sn} is called the sequence of partial sums.

If lim,, . s, = s exists in R (s = Foo is not acceptable) we say the series is

convergent and has sum = s. We write >~ |

a, = S.

If lim, .o s, = Foo or lim, .. s, does not exist we say that the series
oo N

> o2, ap is divergent.

4.36 Example. > 7 (n+11)2,1 = 2214 4 32171 4 42171 + ... Then

1 1 A B
a,n: fry — —

n+12—-1 nn+2 n n+2

5 11 1\ In+2-n
C 2n(n+2)



Cancellation pattern: ( |X) + ( | )+ (X] )+ Then
1/1 1 1 1 1/3 1 1
Sn:— — —_—— — — — _— -
2\1 2 n4+1 n+2 2\2 n+1 n+2
Thenlimnﬂwsn—%.%zgsoszg1e 221_14_321_14_...:?_1

4.37 Example. Let r € R be a constant. Consider Y > r" =1+7r+7r*+
r® + ... geometrical series.
Sp=14r+r4... 4"

I e i s A
TV

Sn—1
TSy = S, — 1+ "t
1—rtt=g, —rs,
1_7,n+1 ]
Sp=——— ifr#1
1—r

1

If 7| < 1,ie. —1 <7 <1 then r"™ — 0 so lim, .o S, = T

Ifr=1thens,=n+1— 4+

For any other value of r, lim,, ., s, does not exist. So the geometrical series
is convergent only for —1 < r < 1.

o0

Zrn:1+r+7“2+7“3+"':1 if —1<r<l1
—r

n=0

4.38 Theorem (Cauchy Criterion). >~ | a, is convergent < for every ¢ > 0
there is ng € N such that for all n,m > ny with n > m we have |>°}_  ax| =
| + Qg1 + -+ -+ ap| < €.

Proof. >7° | a, is convergent then {s,} is convergent. So {s,} is Cauchy.
That is, for every € > 0 there is ng € N such that for all n,m > ng with
n > m we have |s, — $,,_1| < €.

Sn_Sm—l:a1+a2+"'+an—<a1—|—---—|—am_1):am_|_..._|_an O
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4.39 Theorem. If }_ a, is convergent then lim, ., a, = 0.
Proof. a, = s, —s,.1 —s—s=0. O

4.40 Example. > 7 (—=1)" = (=1)+1+(-1)

n=1
since lim,,_...(—1)" does not exist. So lim,, . (

+1+(=1)+--- is divergent
1)t £0

] 0 if n is even
Sn =\ Z1 ifnis odd

4.41 Definition. A series >~ a, is said to be non-negative if there is
ng € N such that for all n > ng we have a,, > 0.

4.42 Theorem. Let ) a, be a non-negative series. Then > a,, is convergent
< {s,} is bounded.

Proof. There is ng such that for all n > ng we have a,, > 0.

Sng = Sng—1 T Qng > Sno—1

Sno+1 = Snyg + Any+1 Z Sng
Spr1 = Sp T App1 > Sn

Snp S Sl S <8y S Sy St

By monotone sequence property (since {s,}5, is increasing), {s,} is con-
vergent < {s,} is bounded. O
4.43 Theorem (Comparison Test).

(a) Suppose there is ny such that for all n > ng |a,| < ¢, and > ¢, is
convergent. Then ) a, is also convergent.

(b) Suppose there is ny such that for all n > ng a,, > d, > 0 and ) _d, is
divergent. Then Y a,, is also divergent.

Proof.
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(a) Use Cauchy criterion. Let ¢ > 0 be given. Since ) ¢, is convergent,
there is ny € N such that for all n,m > n; with m < n we have
I> .. ¢kl < e. Let ng = max{ng,n1}. Let n > m > ny. Then

n

D a

k=m

= |am + ami1 + -+ an| < | + a4+ Jan)
~  N—— ~—
<cm <cm+1 <cn
Scm+cm+1+"'+cn:’Cm+cm+1+"'+cn|<€

(b) This follows from (a). If ) a, were convergent, then by (a), > d,
would be convergent. O

4.44 Theorem (Cauchy Condensation Test). Suppose a; > as > az > --+ >
0. Then Y 7, a, is convergent < > 7~ 2Fay = a; + 2ay + 4ay + 8ag + - - -
is convergent.

Proof. Let s, =a1+as+---+a, and t,, = a; + 2a2 + - - - + 2"asn.

tn:a1+2a2—|—4a4+---—|—2"a2n
:a1+(a2+a2)—|—(a4+a4+a4+a4)—|—---+£a2n+a2n—l—---+a2n)/

Vv
2" terms

> a1+ as+az+ -+ Aonti_] = Son+1_7

Son = ay +as + (a3 +ayq) + (a5 + ag + ay + ag) + -+ + (agn-141 + -+ + agn)

TV
2n—1 terms

1
> Zay + as + 2a4 +4dag + - + 2" ay

2
1 1
= §(al + 2a5 + 4ay + 8ag + -+ + 2"agn) = 51&”

Then son+1_1 < t, < 289n. S0 Y a, is convergent < {s,} is bounded < {t, }
is bounded < > 2*aq is convergent. O

4.45 Example. Let p > 0 be constant and consider the p-series > -
Thenan:n—p>0anda12a22a32

i 2ka2k = i Qk
k=0 k=0 (

’I’LlnP

=2 A=) @

Geometric series with » = 27 > 0. It is convergent < r < 1, ie.
27 <1ep>1 Ifp<Oletg=—p>0 a =5 =+ =ni
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then lim,, . a, # 0. So > # is divergent.

Summary: Let p be a constant. Then > 7, nip is convergent < p > 1.

For example, Y 7, 25 and >, —= are convergent but > ° % and

ny/n
o0 1 . [ele] 1 . [e’s) 1 .
> one1 75 are divergent. )07, Srmoer is convergent. )07 —T is not a

p-series since the exponent 1 + % is not a constant.

4.46 Remark.
— n2 6
The Number e
The series
=1 IR S
E%H_ b gt
is convergent. For n > 2
1 1 1
a’TL = — = S
n! 2-3...n = 2771

—

n—1 factors

n . .
> o =23 ()" is convergent. So by comparison test, Y oo @, = Y oo &
is convergent.

4.47 Definition.

4.48 Theorem. e is not rational.

Proof. Suppose e is rational. Then e = § where p, ¢ are natural numbers.
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Since all a,, > 0, we have s,, < e for all n. We have 0 <e — s, < q_i]

1 1 1
e—S;= + + + -
“ q+1 q+2) (¢ +3)!

'[1 142 q+2>1<q+3>+'”}

{1+q+1 q+1>1(q+1)+m]

_I_
1 ) . ) 1
= —_— Geometrical series with r = ——
g+ ) &= q+1 g+ 1
1 1 I qg+1 1

< =
(C.H'l)'l—ﬁ (¢+1)! ¢ q'q
Then 0 < ¢l(e—s,) < %1. p=e-qisaninteger. Soql-e=1-2---(¢—1)-q-€
is an integer. ¢!s, = ¢! (1 +1+ % +o %) is also an integer. So gle —¢s,

is an integer. Also, % <1s00 < qle—gq!s, < 1. Contradiction. O

4.49 Remark. e is not even an algebraic number.

A real number 7 is called an algebraic number if there is a polynomial P(x) =
@™ + ap_12" L+ - - 4 a2 + ag with integer coefficients ay, an_1, ..., a1, ag
such that P(r) = 0.

4.50 Example. r = /2 is algebraic. P(r) = 22 — 2 then P(r) = 0.

A real number that is not algebraic is called transcendental. e, m are tran-
scendental numbers.

4.51 Theorem (Root Test). Given ) a, let @ = limsup,,_,., ¥/|an|. Then
0<a< +oo.

(a) a <1=>a, is convergent
(b) a>1= > a, is divergent

(¢) @ =1= No information

Proof.

(a) Find g such that @ < # < 1. Then there is ny € N such that for all
n > ng we have {/|a,| < 8. That is, |a,| < " for all n > ng. > 6"
is convergent (geometrical series, 0 < # < 1) so by comparison test,
> ay is convergent.
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(b) We have a > 1. Since limsup is the largest subsequential limit, we can
find a subsequence {n} of natural numbers such that "{/|a,, | — «.
Since a > 1, we have "{/|an, | > 1 = |a,,| > 1. Then “lim, o a, = 0"
cannot be true. So ) a,, is divergent.

(¢) 2 is divergent and a = 1. (in fact lim, o {/|2] = 1)

> 25 is convergent and o = 1. (in fact limy, .o { |#| =1) O

4.52 Example. Consider y >, % Then a,, = 2% We apply root test.

n

Y lan| = \”/2;" = % We have o = limn_,oo% =2 a>1s Y (—Z)" is
divergent.

4.53 Theorem (Ratio Test). Let > a, be an arbitrary series.

(a) If limsup, .. 1l <1 then 3 a, is convergent.

lan|

(b) If liminf, . l“g“' > 1 then ) a, is divergent.

lan]

(c) If liminf, .. == <1 <limsup, . %1 then no information.

lan| lan]

Proof. Omitted. Similar to the proof of the root test.

4.54 Example. Consider ) a, where

2 . .
1’6—” if n is odd
ap = s

mn

Too= if n is even

a, > 0 for all n so |a,| = a,. Then

(n+1)3
0t if i is odd
|| _ Qnt1 o7
- - 2
|an| an (n+1)

T . .
42— if n is even

Then

nZ
(n

(n+1)3 1 . .
|an+1| a2z 1onF2 if n is odd
- 1)2 . .
%10” L if n is even
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So limsup,, lentil — 4 oo and liminf,_. 22l = 0. So ratio test gives no

|an] |an]

information. Then try root test.

@ if n is odd
% if n is even

vV an| =

+ and &5 are the only subsequential limits of {{/|a,|}. ~We have

10
limsup,,_,, V/|an| = % < 1. So by root test, the series ) a, is conver-
gent.

4.55 Remark. Root test has wider scope.
Ratio test shows convergence = Root test shows convergence

Root test gives no information = Ratio test gives no information

4.56 Theorem. Let {c,} be any sequence of positive numbers. Then

Cn+1 Cn+1

lim inf < liminf /¢, <limsup /¢, < limsup

n—oo  Cp n—00 n—oo n—00 Cn
Raabe’s Test: Let ) a, be a series of real numbers.

lan|
|an+1‘

(a) liminf, . n ( — 1) =p If 1 <pthen ) a, is convergent.

(b) limsup,,_,.,n ( lanl 1) =¢q If ¢ <1 then ) a, is divergent.

lan+1]

4.57 Example. Consider >~ %2(2;)1)

1:3-(2n—1)-(2n+1)

lGnt1]  Gnp1r | 2dee)@erz) 20+ 1 .
- - 1-3--(2n—1) -
|| an S Seiae 2n + 2
We have limsup,,_,__ 2=+l = liminf, . |a|22|1| So ratio test gives no infor-

an
mation. Then try Raalbels test.

|| 2n+2 1 1
|1 2n+1 2n+1 2

lan| _
lan+1]

We have limsup,, ., n ( 1) = % < 1. So the series is divergent.
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4.58 Definition (Power Series). Let {c,} be a fixed sequence of real numbers
and x € R be a variable. The series

cotar+er?+ e+ = chx"
n=0
is called a power series.
4.59 Example. Let ¢, = 5. Consider 1+ z + ‘g—? + ﬁ—? o=

General Question: Given a power series, find the set of all x for which the
power series is convergent.

We apply root test.

limsup 1/ |c,a™| = limsup |z| {/|c,| = |z| limsup {/|c,| = |z]a

n—oo n—oo n—oo

call «

If |z|ja < 1,ie. |z| <2

then > c,z™ is convergent.

If |z|a > 1, i.e. |z| > = then ) ¢, 2™ is divergent.

Q=

4.60 Theorem. With any power series > c,z™ is associated a radius of
convergence R, 0 < R < +o00 such that

(i) The series converges for all x with |z| < R

(ii) The series diverges for all x with |z| > R

R =< where o = limsup,,_ o, {/|c,| or o = lim,, .o % if this limit exists.
If @« =0 then R = +o0. If & = 400 then R = 0. (For R = 0, it means the

series Y ¢,x™ converges only for x = 0.)

4.61 Example. Consider Y >  nlz™ = 1+2+2lz*+3la®+- -+ Then ¢, = n!

a = limM: lim (n+1) = 400

So R =0 and »_ nlz" converges only for x = 0.

4.62 Example. Consider > °° 2. =14z + 3;—? + :g—? + -+ Then ¢, = &

n=0 n!
a = lim [Cne] = i L _
n— o0 |Cn| n—>OOTL—|—1

So R = +oo and ) £ converges for all z € R with |z| < 400, i.e. for all
r € R.
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4.63 Example. Consider >, - Then ¢, = +

a = limsup {

n—o0

= limsup — =1

n—00 \/ﬁ

1
n

So R =1 and

The series Y £ is convergent for all z with |z] < 1,ie. =1 <z <1
The series Y £ is divergent for all z with |z| > 1,ie. 2 < —1,1<u
No information for |z| =1, i.e. z = F1

Ife=1,5", 2 =5%" 1%isdivergent. (p-series with p = 1)

fo=-1,50 = g4l 11 .

n

Abel’s Partial Summation Formula: Let {a,} and {b,} be two se-

quences.
n

Anzzak:a1+a2+"'+an

k=1
Then
n+1 n
Z agby = An+1bn+1 - Z Ak(bk—H - bk)
k=1 k=1
Proof. Let Ag=0. Then ap, = Ap — Ap_1, k=1,2,...
n+1 n+1
Zakbk = Z (Ak - Akfl) by
k=1 k=1
n+1 n+1
=D Abi— ) Araby
k=1 k=1

———
k=1 Akbr1

= Z Agb + Ap1bpa — Z At

k=1 k=1

= App1bpp + Z A (b — bry1) O

k=1

4.64 Theorem (Dirichlet’s Test). Let {a,} and {b,} be two sequences of
real numbers. A, = Y7 ap =a; + -+ a,. Assume

(a) The sequence {A,} is bounded
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(b) by > by > b3 > ---
(¢) lim, .00 b, =0

Then > ° | a,b, is convergent.

Proof. Let s, = aiby + -+ + apb,. Show {s,} converges in R. By Abel’s
formula

St = Apsibnsr — Y Ap(bpr — by)
k=1
{A,} is bounded, so there is a constant M > 0 such that |A,| < M for all n.

-M S An+1 S M
If we multiply by b,+1 > 0 we get
—Mbyy1 < Apgrbpyr < Mbpyq

So limy, o0 Apt1bns1 = 0. Next, show lim,, o (D,_; Ax(brs1 — by)) exists in
R. This is the n-th partial sum of the series Y >~ A, (by41 — by). So show
the series Y~ | A, (bn41 —by) is convergent. Use Cauchy criterion. Let € > 0
be given. Let &’ = 537 > 0. Since lim,, . b, = 0, we have ng € N such that
for all n > ng, |b,| = b, — 0| < €’. Let n,m > ng and n > m.

Z Ak (brs1 — by)

k=m

<A brpr — bl S MDYk =m by — by

ke=m <M br—bp 41

= M ((bm — bing1) + (b1 — binga) + -+ (b — bpt1))

= M(bm - bn+1) < M’bm - bn+1’ < M( bm‘ - ‘anrlD
— ——

< M2 =¢ O

4.65 Example. Consider

1+ 2 3 1+5% 2 3 1+z% 2 3
+—=—-— +—=—-——+
V1

+___+...

VYRV A Y BV R
Thenblzﬁ,bgz%ﬁ,bg,:\%---bn:\/iﬁ---{bn}satisﬁes(b)and(c).
Alsoay =1+ F,a=2,a3=-3, a1 =1+ 35, a5 =2, a6 =3, ar = 1 + 75,
a8:2,a9:—3,...

ThenA1:1+1%,A2:3+1%7A3:1%7A4:i_|_1_|_L A5: 12_{_3_|_4L2’

1z

&
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A6:1%+6+4i2"'

1 1 1
We have A,, < 3+ = + = + = +--- So {A,} is bounded. So the series is

convergent by Dirichlet’s test.

Alternating Series Test Of Leibniz: Assume b; > by > b3 > --- and
lim,, s b, = 0. Then

S (=1)"by = —bi+by—bs+--- and Y (=1)"b, =by—by+by—---
n=1 n=1

are convergent.

4.66 Example. Let b, = % Then

1 1 1 1
(=)o =1-c 4o -+ -~ =In2
— n 4
is convergent.
The series > " ¢, = Y00, (_17):“ le. ¢, = (_17):“ is convergent but

S lenl =300 & is divergent.

4.67 Definition. Let > ¢, be aseries. If > ¢, is convergent but >_ |¢,| is di-
vergent, we say » ¢, is conditionally convergent. If Y~ |¢,| is also convergent,
we say Y . ¢, is absolutely convergent.

4.68 Theorem. If ) |¢,| is convergent then ) ¢, is also convergent.

Proof. Use Cauchy criterion. Let € > 0 be given. Since ) |¢,| is convergent,
there is ng such that for all n > m > ng we have | ,_ |cx|| < e. Let

n > m > ng. Then
n n
Z el < Z lex| < e
k=m k=m

So Y ¢, satisfies Cauchy criterion. Then ) ¢, is convergent. O

For absolute convergence we can use root test, ratio test or comparison test.
For conditional convergence we can use Dirichlet’s test or alternating series
test. (Only for alternating series.)
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4.69 Example. Consider

= (—=1)nt! 1 1 1
—l—4-_—4...=8
Z n 2+3 4+

n=1

The series is convergent by the alternating series test.

11 1 1 1 1 5
S = 1_§+§_<(Z_l — 5) + (6 — §> + - > = 6—(& positive number) <

Consider the rearrangement

S| Ot

1+1 1+1+1 1+1+1 1+1+1 1+
ST T Ty 9T T 1315 8
Each group is in the form
1 N 1 I (4n—1)2n+ (4n —3)2n — (4n — 3)(4n — 1)
4n—3 4dn—1 2n (4n —3)(4n —1)2n

8n? —2n + 8n? —6n — 16n> +4n + 12n — 3

81— 3
_NT0 o

If ¢, is the n-th partial sum of the rearrangement. Then t3 < tg < tg < ---

Then limsup,,_,tn, > t3 =1+ % — % = %. It follows that lim,,_.. t,, cannot

be S since S < %. This is a property of the conditionally convergent series.

Given a conditionally convergent series > a, and —oco < r < 400, it is
possible to find a rearrangement of the series such that rearrangement has
sum= r.

4.70 Definition. Let ¢ : N — N be a 1-1, onto function. Let Y > a,
be a series. Let b, = agn). The series Y " b, = > | ag(n) is called a
rearrangement of the series Y > | ay,.

If

1 1 1 1 1
P R A A
Then ¢(1) = 1, $(2) = 3, 6(3) = 2, 6(4) = 5, 6(5) = 7, 6(6) = 4, ...
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0o . . 00
4.71 Theorem. Assume ), a, is absolutely convergent, i.e. Y > |a,|
. o0 . .
is convergent. Then every rearrangement of > a, is convergent and it
converges to the same sum.

Proof. Let > | as() be a rearrangement of > | a,. Let

Sp = a1+ ay+ -+ an
tn = Qo) + ag(2) + -+ + Ag(n)
Given s, — s where s € R (s # Foo). Show s, —t, — 0 as n — oo. Let

e > 0 be given. Since ) a,, converges absolutely, there is N such that for all
n>m > N we have ), |as| <e. Find p > N such that

{12,..., N} C{9(1),6(2),...,9(p)}
Take n > p. Then
|, — tn, — O] =[5, — 0]
=lay +as+---+any+any1 + -+ ay
(1) = Gg(2) = T = Ag(p) — 0~ Ug(n)|

TV
N of them will be cancelled

/

~
The remaining terms will be of the form —aj where k>N

Let ¢ = max{k : Fa) remains in the above}. Then

q
[5n —ta = 0] < > ag| << O

k=N+1

4.6 Operations With Series

4.72 Theorem. Let Y a,, > b, be convergent series with sums A and B.
Let ¢ € R be a constant. Then

Z(an + b,) is convergent and has sum A + B

g ca, is convergent and has sum cA

4.73 Remark. The sum of two divergent series may be convergent.
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4.74 Example.
>y + and Y7 — 5 are both divergent.

D (% — HLH) =y, m is convergent.

4.75 Example. > ((%)n — 5(;371) is convergent.
- 2)” - " 1 1 4
(= —52(——) - —— -5 —3-5-=-1
n=1 (3 n=1 4 L= 3 - _i> 5
Cauchy Product Of Two Series: Consider the series
Zan:ao+a1+a2+~- and an:b0+b1+b2+
n=0 n=1

We define a new series >~ ¢, as follows

co = apby
c1 = agby + aibg

Cy = a0b2 + a161 + CLQbO

Cp = aobn + albn,l + -+ an,1b1 + Clnbo = Z akbn,k
k=0

Yoo Cn is called the Cauchy product of > 7 ja, and > 7 b,.
4.76 Theorem. Assume

(a) D7, an is absolutely convergent and Y ja, = A

(b) >°>° by is convergent and » o b, = B

(€) ¢n=> % _gakbp_r n=0,1,2,...

Then Y > ¢, is convergent and has sum C' = AB.

4.77 Remark. The above theorem is not true if both series are conditionally
convergent.
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4.78 Example. Consider the Cauchy product of the conditionally conver-
gent series

- ()11 11
Z n—i—l_\/I \/§+\/§ V4

n=0
_ (="
with itself. We have a,, = b,, = WosE Then

B (=t _ " 1
C”_;\/lwrl Vn—k+1 =1 “V(E+1)(n—k+1)

We have

2
(n—k+1)(k+1) = nk+n—k?—k+k+1 = nt1+k(n—Fk) < n+1+"I = (E + 1)

When 0 < z <n, max. of z(n — z) is ”72 so we have

n

1
enl = Z\/k+1 n—k+1)>z

k=0 /(2 +1)
_z”: 1L _n+l_ 2042
R+l S5+l n+2 T

So “lim, .o ¢, = 0” cannot be true. So the series >_ ¢, is divergent.
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5 Continuity

5.1 General

Let (X,dx) and (Y,dy) be two metric spaces. Let F # () be a non-empty
subsetof X, f: E =Y, pe £, qgeY. Wesaylim,_,, f(x) =q (or f(x) — ¢
as x — p) if for every € > 0 there is 6 > 0 with the following property: For
every x € E with dx(z,p) < § we have dy(f(z),q) < e. Equivalently, for
every € > 0 there is 6 > 0 such that f (B (p) N E) C BY(g). 6 > 0 depends
in general on £ > 0 and the point p. For lim,_,, f(z), f(p) need not be
defined.

5.1 Example. Let X = R? with dy and Y = R with | - | metric.
Let £ ={(z,y): (z,y) ER?and ay #0}. f: E =R, f(z,y) = Zsin ()
Let p = (a,0) where a > 0. Then p € E'. Show lim(, y)—(a,0) f(z,y) = 1. Let

€ > 0 be given. Since lim;_q Si]t“t =1, we have ¢’ > 0 such that for all ¢ with

0 < |t| < ¢’ we have |2t — 1| < e. Choose § = 1‘f(;,. Then 0 < 6 < a. Show

that for all (z,y) € E with ds ((z,y), (a,0)) < § we have that |f(z,y)—1| < €.
Let (z,y) € E be such that ds ((x,y), (a,0)) < 4 i.e.

(x—a)’+(y—072<é=|v—a|<dand |y —0] <6
a—6<x<a+dso0<wz Lett=2 Then

ad’ ad’

vl lyl 0 140 1+ ad’ /
O<|t|:m:?<a_5:a_ a5/:a+a5’fa5’:7:5
1+o/ 1+0/
So t = £ satisfies 0 < [t| < &', thus
int sin (¥
Sli—l <e e (9”)—1 <e
t Yy
x

5.2 Theorem. lim,_,, f(z) = ¢ < for every sequence {p,} in E with
lim,, . p, = p and p,, # p we have that lim, ... f(p,) = ¢

Proof.

(=): Suppose lim,_,, f(z) = ¢q. Let {p,} be an arbitrary sequence in E such
that lim, .. p, = p and p, # p. Show lim, .« f(pn) = ¢. Let € > 0
be given. Since lim,_,, f(z) = ¢, there is § > 0 such that for all x € £
with dx(z,p) < 0 we have dy(f(x),q) < e. Since lim, ... p, = p,
there is ny such that for all n > ng, dx(p.,p) < d. Let n > ny.
Then dy (f(pn),q) < € since x = p,, (for n > ng) satisfies x € E and
dx(z,p) <9.
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(«<): Proof by contraposition. Suppose lim,_,, f(z) # ¢. So there is an
g0 > 0 such that for every § > 0 there is # € E such that dx(x,p) < ¢

and dy (f(x),q) = eo-
Let 0 =1, find . = p; € E s.t. dx(p1,p) <1 and dy(f(p1),q) > €o

1 1
Let § = Y find x = py € E s.t dx(p2,p) < 3 and dy (f(p2),q) > o

1 1
Let 6 = — find x = p, € E s.t. dx(pn,p) < - and dy (f(pn),q) > o

Then {p,} is a sequence in F such that lim, ...p, = p and
limy, o0 f(pn) # 4. O

5.3 Corollary. Let E C X, pe E', f,g: E — R such that lim,_,, f(z) = A
and lim,_., g(z) = B. Then

i (/@) + 9(2) = A+ B

lim f(z)g(x) = AB

o) A

5.4 Definition. Let (X, dx) and (Y, dy) be metric spaces. Let ) # F C X,
f:E—Y,pe E Wesay fis continuous at the point p if lim,_,, f(x) =
f(p), i.e. for every ¢ > 0 there is § > 0 such that for all z € E with
dx(x,p) < § we have dy(f(x), f(p)) < e. In general ¢ depends on € and p.
If f is continuous at every point p of F, we say f is continuous on E.

5.5 Theorem. Let (X,dx) and (Y, dy) be metric spaces and f : X — Y
(i.e. E=X). fis continuous on X < for every open set V' C Y, the inverse
image f~!(V') is an open set.

Proof.

(=): Let f be continuous on X. Let V C Y be an arbitrary open set. Show
f7YV) is an open set in X. Let p € f~}(V) be an arbitrary point.
Then f(p) € V. V is open, so there is s > 0 such that BY (f(p)) C V. f
is continuous at p. Then for e = s > 0, we find § > 0 such that for all =
with dx(z,p) < & we have dy(f(z), f(p)) < e. Show B¥(p) C f~1(V).
Let x € B{(p), i.e. dx(z,p) < = dy(f(x), f(p)) <e=s= f(x) €
BY(f(p)) C V. f(x) €V, soxe [ (V).
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(«<): Suppose f~1(V) is open for every open set V' C Y. Show f is continuous
on X, i.e. show f is continuous at every point of X. Let p € X be
an arbitrary point. Let € > 0 be given. The set V = BY (f(p)) is an
open set in Y. Then f~1(V) is an open set in X. Also p € f~1(V).
Then there is § > 0 such that B (p) € f~*(V). Let = be such that
dx(z,p) < d,ie. x € Bf(p). Then z € f~1(V), ie. f(x) €V, ie.
dy(f(z), f(p)) <e. O

5.6 Corollary. Let f: X — Y. f is cotinuous on X & for every closed set
F CY we have that the inverse image f~'(F) is closed in X.

Proof. F C Y is closed < FC is open. Using f~1(F°) = (f~}(F))" and
“f is continuous <> the inverse image of every open set is open” we get the
result. O

5.7 Theorem. Let (X, dx), (Y,dy) and (Z,dz) be metric spaces. ) # E C
X, f:E—=Y,g: f(E) = Z, pe E. If fis continuous at p and g is
continuous at ¢ = f(p) then g o f is continuous at p.

Proof. Let ¢ > 0 be given. Since g is continuous at ¢, we have a ' > 0
such that for all y € f(F) with dy(y,q) < ¢’ we have dz(g(y),g(q)) < e.
Since f is continuous at p, we have a d > 0 such that for all € E with
dx(z,p) < d we have dy (f(x), f(p)) < ¢'. Let x € E and dx(z,p) < §. Then

dy (f(x), f(p)) <& So dz(g(y),9(q)) < eie dz(9(f(x)),9(f(p))) <e. O

Let (X,d) be a metric space and f : X — R¥. f(z) € R¥, so we have
f(x) = (i), fo(@), ..., fe(x)) where fi, fo, ..., fo : X = R.

5.8 Example. f:R?> — R? and f(x,y,2) = (2*y + 1, 2%z — 3) € R2.

fl(mvyvz) fQ(x’yzz)
5.9 Theorem. f : X — R is continuous on X & fi, fo,..., fi are all
continuous on X.

In the above example, fi, f> : R® — R are continuous (since they are poly-
nomials) we have that f : R® — R? is also continuous.

5.10 Theorem. Let f,g: X — R be continuous at the point p. Then f+ g
and f - g are continuous at p. § is continuous at p if g(p) # 0.
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5.11 Example. X = R*. Fix a coordinate, say j-th coordinate. Define
f: R*¥ — R. fis continuous on R*. z = (zy,29,...,25) — z;. Fix
p = (p1,p2,...,pr) in R*. Show f is continuous at p. Given € > 0, choose
§ = ¢e. Let o € R* be any point such that dy(z,p) < §. Then

|f(x) = f(p)| = |zj — pil = \/(xj — py)?
< \/($1 —p1)?+ (v —pp)? =do(x,p) <d=¢

If ni,n9,...,n;, are non-negative integers then define ¢ : R¥ — R by
g(x) = aP'al?---2*. Then by the theorem, g is continuous on R*. So

every polynomial P(z) = > ¢y, 27" -+ - 2" is continuous on X.

5.12 Example. P :R? — R and P(z,y) = 52 — Tx3y* + 8y° + bay? — 3 is
continuous on R2.

5.2 Continuity And Compactness

5.13 Theorem. Let f : X — Y be continuous on X. Let E be a compact
subset of X. Then the image f(E) is a compact subset of Y. (Continuous
image of a compact set is compact.)

Proof. Let C = {G, : a € A} be an open cover of f(E), i.e. every G,
is an open set and f(E) C U,y Ga- Let Vo = f7H(G,) and a € A. 'V,
is open for every o € A. Do we have F' C (J,cqVa 7 Let x € E. Then
f(x) € f(E). Then f(x) € G,, for some ap € A. So x € f7HGay) = Vay-
S0 E C Uuey Va- So the collection C" = {f~1(G,) : a € A} is an open cover
of E. Since FE is compact, there are aq,...,a, € A such that

E C f_l(Gm)U"'Uf_l(Gan)
f(E> - f (f—1<Ga1) U"‘Uf_l(Gan))
=/

(f_l(Gcn)) U---u f (f_l(Gan))
C G, U+ UG,

So C has a finite subcover {G,,,...,G,, } of f(E). O
In the proof of the following corollary, we will need the following proposition.

5.14 Proposition. Let S # () be a bounded subset of R. Then sup S, inf S €
S.
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Proof. For supS only. Let o = supS. Show every neighborhood B of «
contains a point s from S. B = (o — e, +¢€). Since « —e < sup S, o — ¢
cannot be an upper bound for S. So there is an element s € S such that
a—e<S8. Alsoifse Sthens<a<a+e Soa—ec<s<a+e,le.
s € B. [

5.15 Corollary. Let (X, d) be a compact metric space and f : X — R be
continuous on X. Then there are points p, ¢ € X such that for all z € X we
have f(p) < f(x) < f(q). (A continuous real valued function on a compact
set attains its min.= f(p) and max.= f(q))

Proof. The set S = f(X) # () is a compact subset of R. S is bounded. Then
supS € S. S is closed, i.e. S =S5 sosupS =S = f(X). That is, there is
q € X such that sup S = f(q). For all z € X we have f(z) <supS = f(q).
Similarly, inf S € S so inf S = f(p) for some p € X. O

5.16 Corollary. Let f : [a,b] — R be continuous on [a,b]. Then there are
two points p, ¢ € [a, b] such that for all z € [a, b] we have f(p) < f(z) < f(q).

5.17 Theorem. Let X be a compact metric space, Y be an arbitrary metric
space, f : X — Y be continuous, 1-1, onto. Then the inverse function
g=f"1:Y — X is also continuous.

Proof. Show that for every closed set F' C X, the inverse image ¢~ '(F) is a
closed set in Y. We have ¢g7'(F) = f(F). X is compact, F is closed so F is
compact. f is continuous, so f(F') is compact. So f(F) is closed. O

5.18 Remark. If compactness of X is removed then the theorem is not true.

5.19 Example. X = [0,27] in R with d(z1,22) = |21 — 22]. Y = {(x,y) :
(z,y) € R?, 2?+y? = 1} with dy metric restricted to Y. Define f: X — Y as
f(t) = (cost,sint). f is continuous, 1-1 and onto. But f~! is not continuous
at the point p = (1,0).
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5.3 Continuity And Connectedness

5.20 Theorem. Let X, Y be metric spaces and f : X — Y be continuous.
Assume X is connected. Then f(X) is also connected. (Continuous image
of a connected set is connected.)

Proof. Assume f(X) is disconnected. Then there are sets E, F' C Y such
that f(X) = FEUF and ENF =0, ENF =0, E # 0, F # 0. Let
A= fYE)and B= fYF). A#0. Let ¢ € E C f(X), so q = f(x) for
some ¥ € X. Since f(z) =q€ E,x € f71(E) = A. Similarly, B # 0.

XCf (X)) =fEUF)=fBE)Uf(F)=AUB

Also AUBC X. So X = AUB. ShoerlB =0 and ANB = 0. Assume

ANB #0. Leepe ANB. Thenp € Aand pc B=f'(F). p € A,
fweF

then there is a sequence {p,} in A such that p, — p. f is continuous, so

limy, o0 f(pn) = f(p). Pn € A= f~H(E) = f(pn) € E. So f(p) is the limit of

a sequence in E. It means that f(p) € E. So f(p) € £N E. Contradiction.
0

So AN B = (). Then X is the union of the separated non-empty sets A, B.

It means that X is disconnected. O

5.21 Corollary (Intermediate Value Theorem). Let f : [a,b] — R be con-
tinuous on [a, b]. Assume f(a) and f(b) have different signs. Then there is a
point p such that a < p < b and f(p) = 0.

Proof. [a,b] is connected = f([a,b]) is connected. So f([a,b]) = [c,d] is
an interval. The interval [c, d] contains both negative and positive numbers
(namely f(a), f(b)). So [c,d] contains y = 0. So 0 € f([a,b]), i.e. there is
p € [a,b] such that f(p) = 0. O

5.4 Uniform Continuity

Let (X,dy) and (Y, dy) be two metric spaces. £ C X and f: F — Y. We
say

(i) f is continuous on E if for every p € E, for every € > 0 there is
d = 0(p,e) > 0 such that for all ¢ € E with dx(q,p) < ¢ we have
dy(f(q), f(p)) < e. (In general 6 > 0 depends on € > 0 and the point
peE.)
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(i) f is wniformly continuous on E if for every ¢ > 0 there is 0 =
d(g) > 0 such that for all points p,q € E with dx(p,q) < 6 we have
dy (f(p), f(q)) < e. (0 depends only on e. The same ¢ works for all
peE.)

Uniform Continuity - Continuity

5.22 Example. Let X =R, Y =R, F = (0,1), dx = dy = |- | and let
f:EHR,f(w):%

Claim 1: f is continuous on E.
Claim 2: f is not uniformly continuous on F.

1) Let p € £ and & > 0 be given. Then 0 < p < 1. Let § = ;2= > 0. If
q € E such that |¢ — p| < 0 then

|f(p)—f(q>|=‘ —1\=M<i

1
P g pq pq

We have |¢g —p| < d,s0p—3 < qg<p-+0. We have §j < p, i.e.

2

13
P o pocp<ptep’
1+ep
So0<p—9and
2 2
J 0 T Tt ep?
1f(p) = fl@)] < — < = r____Ue .
— +ep”—¢ 2
pqg  plp—9) P<P—ff5p> pEE  p

So fis continuouQS at p € E. Since p € F is arbitrary, f is continuous on F.
Note that § = % depends on both € and p. So we are inclined to say that
f is not uniformly continuous on E. But maybe by some other calculation,

we can find 6 depending only on €.

2) Show that f is not uniformly continuous on F, i.e. § cannot be found
depending only on £. Assume for ¢ = 1, we have a § > 0 such that for all
p,q € E with |p — ¢q| < we have |f(p) — f(q)| < 1.

Case 1: O<6§%. Letpzéandqzé—l—g. Then p,q € E and
p—ql =5 <4 Sol|f(p) - fla)l < 1.

1_1‘:|p—q|_%_
P q

>1

16~ @)l - | -
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Contradiction.

Case 2: 3 <. Let 8 =3 <. Asincase 1, let p=0"and ¢ = &' + %/. Then
lp—q| <0 <dand |f(p) — f(¢q)| > 1. Contradiction.

5.23 Example. Let X =Y =R, E = [2,5], f : E — R, f(z) = 2. Then
J is uniformly continuous on E. Let € > 0 be given. Let 6 = ;5 > 0. Let
p,q € E be such that [p — ¢q| < §. Then

fp) = f@l =1 = =1p—a)(p+q)
=lp—dqllp+tag =lp—q(p+q) <100 =¢
—— ——

<6 <10

5.24 Theorem. Let f : X — Y be continuous on X and let £ C X be
compact. Then f is uniformly continuous on E.

Proof. Let € > 0 be given. Given p € F, since f is continuous at p, we have
a0 = d(p,e) > 0 such that for all ¢ € F with dx(q,p) < d(p,e) we have

dy(f(q) — f(p)) < 3
% — {B%(p) :peE}

Do this for every p € E. Then % is an open cover of E. Since F is compact,
this open cover has a finite subcover

%/ - {B&(péys) (p]_), ey Bé(pg,s) (pn)}

for some finite set p1,...,p, € E. So

FE C Bé(pé,s) (]91) J---u Bé(pg,s) (pn)

3 T3

property in the definition of uniform continuity. Let p,q € E be two ar-

bitrary points such that dx(p,q) < §. We have that p € Bsw,.o (p;) and
3

Let § = min{é(m’e) 5(’)"’6)}. Then § > 0. Show this & > 0 has the

q € Bsw, . (p;) for some p;, p; from py, ..., py.
3

pGB@(pi) qGB@(pj)
I I
dx(p,pi) < 282 < 6(p;, ) dx(q,p;) < 282 < 6(p;,¢)
N8 N2
dy(f(p), f(pi)) < § dy(f(q), f(pj)) < §
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Assume 0(p;,€) < 0(pj, ). Also

dx (pi,p;) < dx(pi,p) +dx(p,q) +dx(q,p;) < (pj,e) = dy (f(pi), f(py)) <
——— N N —

<5(P§»€) <4 <5(Pj,5)

3

So we have
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6 Sequences And Series Of Functions

6.1 General

Consider the following sequence of functions defined for 0 < z < 1.

file) =z, folw) = 2%, fo(x) =2°, ... falx) =2", ...

Fix any z, 0 < z < 1 and consider lim,_,, fu(2) = lim, o, 2™ (x: fixed). If
0 <z <1 thenlim, ,.c2" =0. If z =1 then lim,,_,., 2™ = 1. Define

0 if0<z<1
f@):{ 1 ifr=1

Then for every fixed z, 0 < z < 1, we have lim,,_, f.(z) = f(x).

6.1 Definition. Let £ be any non-empty set and f, : ¥ - R, n=1,2,...
f: FE — R. Wesay f, — [ pointwise on E if for every fixed v € FE,
lim,, o fo(z) = f(z), i.e. for every x € E and for every ¢ > 0, there is a
natural number N = N(z,¢) such that for all n > N, |f.(x) — f(z)] < e.
f is called the pointwise limit of {f,}. In the above example, observe that
every f, is continuous but their pointwise limit f is not continuous on the
set £ = [0,1]. Also every f, is differentiable on the interval £ = [0, 1] but
their pointwise limit f is not differentiable on E = [0, 1].

6.2 Example. Consider f,(z) smﬁ on £ =R, f(z) =0. Then for every
fixed x € R, lim,_ o fn(2) f(z). We have f/(x) = y/ncosnx and

0 =
f'(x) = 0. But lim,,_ f!(z) # f'(z). Take x = 0, then f/(0) = v/n - f'(0).

6.3 Example. On FE = |0, 1], consider the following sequence

An’x ifOSxSi
falz) =9 4n—4nPz if - <z <1
0 1f1<a:§1

lim,, o fn(z) = 0 for every fixed x so f(z) = 0. We have

n—oo

1 1 11 1
/ f(z)de =0 and / falz)dr = =—2n=1 so lim folz)dr =1
0 0 2n 0

So we have

lim fn Ydx # / lim f,(z
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6.4 Example. f,(z) =
where n =10,1,2,...

and E = R. Consider f(z) = >~ fu(x)

_a?
(14+=z2)™

flz) =a*+ i + i +—~~~+—-——i§i——-'+"‘
L+a?  (1+a2)? (14 22)
:xQGﬁ‘ 1 +( 1 >2+”‘+< 1 )n+.”>
1+ \1+a2 L+ a2
h geometric seri;sr with r=- ;12 l

1
:$2—1:1+x2 ifx#0

-2
If =0 then f(0)=0+0+---=0. So
[ 1+a? ifx#0
ﬂ@_{o if =0

So the sum f(x) of continuous functions ) f,(x) is not continuous on R.
Pointwise convergence is not strong enough for the calculus of limits of se-
quences of functions.

6.2 Uniform Convergence

6.5 Definition. Let E be any non-empty set and f, : E - R, n=1,2,..,
f + E — R be functions. We say f, — f uniformly on E if for every ¢ > 0
we have N = N(e) such that for all n > N(e) and for all x € E we have
|fn(x) — f(z)| < e. Here N = N(e) depends on ¢ only and it works for every
r el

6.6 Example. Let 0 < ¢ < 1 be a fixed constant. Let £ = [0, ¢], f.(z) = 2™
We have for every fixed z € E, lim,, .o, f,(z) = lim, o 2™ = 0. So f(z) =0,
ie. 2" — 0 pointwise on E. Does x,, — 0 uniformly on £ 7 Let ¢ > 0 be
given. Since lim,_., ¢” = 0, we have N such that ¢V <e. Letn > N,z € E

|fu(z) = f@)| = 2" =0 =a" < " <N <e

6.7 Example. F = [0,1), f.(z) = 2". For every fixed x with 0 < z < 1, we
have lim,, o fn(z) = lim, . 2" = 0. So f(z) =0 and f, — f,ie. 2" — 0
pointwise on F = [0, 1). But this convergence is not uniform. Assume f,, — f
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uniformly on E. Then for ¢ = }l we can find N; such that for all n > N; and
for all z € E = [0,1) we have |f,(z) — f(z)| < § i.e. z, < I. Also

. n+1\" . 1 . n |
lim =lm (1+— ] =e= lim =_
n—oo n n—oo n n—oo \ N + 1 e

> 0 we have N5 such that for all n > N, we have

<1 1:> 1+1< n " 1<1 1
e 3 e 3 n+1 e e 3

So fore =1 —

1
e 3
n "1
n+1 e
1 n "
:>§<(n+1) for all n > N,

Let N = max{N;, No}, x = NLH and € E. Since N > N;, we have 2V < }l
N

: 1 N 1
and since N > Ny, we have 3 < z*. So 3 < (N—Jr1
not true.

N 1 - 1 1 . .
) < g le. §<thlch1s

Cauchy Criterion For Uniform Convergence

Let £ # 0, f, : E — R, n =1,2,... Assume for every ¢ > 0 there is a
natural number N = N(¢) such that for all n,m > N(¢) and for all x € E
we have |f,(x) — fm(x)| < e. Then there is a function f : F — R such that
fn — f uniformly on F.

If we have a series of functions » °, f,(z) defined on a set E, we define
sp(x) = fi(x) + -+ + fu(x). If there is a function f : £ — R such that
$p — [ uniformly on E then we say the series >~ | f,(z) = f(z) uniformly
on K.

Cauchy Criterion: Assume for every € > 0, there is a natural number
N = N(e) such that for all n,m > N(e) with n > m and for all z € FE
we have [>7_  fr(x)] < e. Then there is a function f : E — R such that

Yooy Ju(z) = f(z) uniformly on E.
Weierstrass M-Test: Let f, : E — R, n = 1,2,... Assume for every n
there is a number M,, > 0 such that

(i) |fu(x)] < M, forall x € E

(i) >°>°, M, is convergent
Then the series Y~ | fu(x) converges uniformly to some function f(z) on E.

6.8 Example. £ = R. Consider Zfﬂ%. Then f,(x) =

cos(2nzx)
(2n—1)(2n+1)

()] = | cos(2nx)| 1

@n—1)2n+ 1) = @n—D2n+ 1)

=M, forallze F
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Y ey M, is convergent since 0 < M,, < —5. So there is a function f: R — R
such that Y, f.(z) = f(2) unlformly on R.

6.9 Example. Consider > > — and E = [0, 400). We have

n=1 +n2

T

n 4+ n2x?

To find M,, we use calculus. Find max. of f,(z) for x > 0.

f (2) n + n?z? — xn?2x n — n?z? 0= o2 1:> 1
xTr) = = = xr° = — r = ——
" (n 4+ n2x?)? (n 4+ n2x2)? n vn
0<z %=>:E2< =n’?<n=0<n-n?z>= f(x) >0
\/Lﬁg r=1i<P=n<ntt=n-—n2?<0= f(z)<0

So fn(x) has its max. at the pomtx—\/iﬁ.

1 - 1
_ I D
Mn—fn (\/ﬁ)_n+n2%_2n3/2

> M, =5 LN = —75 is convergent. So there is a function f: E' — R such that
> —2%— = f(x) uniformly on the set E = [0, 400).

n=1 n+n2z2

6.10 Example. Consider a power series > 2 c,@" = ¢g + 12 + cox® + -+ -

Assume it has radius of convergence R > 0. If z = limsup,,_,., {/|c,| then
R=2 Let0<r<Rand E=[-rr]. f,(2)=cua" Forallz e E

()] = leallz|™ < [ealr™
M,

Is > M, convergent ? Use root test.

limsup {/|M,| = limsup {/|c,|r = rlimsup {/|c,| = ra < Ra =1

n—oo n—oo n—oo

«

So by the root test, > M, is convergent. So the power series > ¢,z con-
verges uniformly on E = [—r,r] where 0 < r < R.

76



6.3 Uniform Convergence And Continuity

6.11 Theorem. Let (X, d) be a metric space and E # () subset of X.
fo: E—=R n=12,...and f: E — R. Assume f, — f uniformly on F.
Let 2 be a limit point of £ and assume for every n, lim,_,, f.(z) = A,.
Then {A,} is convergent and lim, ., f(z) = lim, . A,. That is

lim lim f,(z) = lim lim f,(x)

T—T() N—00 n—00 T—ITo

——
f(=@) A

The two limits can be interchanged.

Proof. Show {A,} is a Cauchy sequence in R. Given ¢ > 0, find N = N(¢)
such that for all n > N(e) and for all x € E, |f.(z) — f(z)] < Let
n,m > N(g). Then for any z € £

(@) = [ (@)| < [fulz) — f(@)| + | f(2) = fm(2)| <

-~

<

WV
£
<3

o

This proof shows uniformly convergent = uniformly Cauchy

Take n,m > N(¢) and fix them. For every x € E we have |f,,(z)— f.(2)]| < e.
Let  — xo. |A, — Ap| < e. True for all n,m > N(e). So {4,} is Cauchy.
Since R is complete, lim,,_,, A, = A exists in R. To show lim,_,, f(z) = A,
let € > 0 be given. f,, — f uniformly on E, so there is N; = N;(g) such that
for all n > Ny(e) and for all x € E

fal2) = F@)] < 5+ (1)

A, — A, so there is Ny = Nj(¢) such that for all n > Ny(¢) we have
A= Al< 2 (2)

Let N = max{N;(g), No(¢)}. Since lim,_.,, fn(x) = An, we have § > 0 such
that for all x € F with dx(x,z) < § we have

F(a) = Ax < 5+ (3)

Let € F and dx(x,x9) < J. Then

[f(z) = A < |f(x) = [n(@)| + | fn(x) — An|+ |[Av — A] <e O
N _ BN )
<§ by (1) <§ by (3) <% by (2)
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6.12 Corollary. Let (X, d) be a metric space. Let f,, : X =R, n=1,2,...
f: X — R. Assume f, — f uniformly on X and each f, is continuous on
X. Then f is also continuous on X. (Uniform limit of continuous functions
is continuous.)

Proof. Fix xo € X. Show lim,_,, f(x) = f(xo).

lim f(z) = lim lim f,(z) = lim lim f,(x) :7111_{1010 fo(xo) = f(zo) O

T—T0 T—To N—00 n—0o0 T—xQ

6.13 Remark. If each f, is uniformly continuous on X and f, — f uni-
formly on X then f is also uniformly continuous on X.

6.14 Example. £ =[0,1], fu.(x) =2, n=1,2,...

0 if0<z<1
f(x)_{ 1 ifr=1

Each f, is continuous on E but f is not continuous. So {f,} does not
converge to f uniformly.

lim lim z" # lim lim 2"

r—1— n—o0 n—oo r—1—
. 0 7 (. 1 v
0 1
(1) z fixed. Take limit as n — oo (1) n fixed. Take limit as x — 1~
(2) Take limit as © — 1~ (2) Take limit as n — oo

6.15 Corollary. Let (X,d) be a metric space. Assume f, : X — R, n =
1,2,...is continuous on X for every n and ), f,(z) = f(z) uniformly on
X. Then f is also continuous on X.

limg oy > ooey fu(z) and D07 lim, ., fu(2)

lim, .., f(x) > oney fa(20)

f (o) = f(xo)

So limy_py Y07 fulz) = > 00 lim, oy fu(z) if - fu(z) = f(x) uniformly
on X.
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6.16 Example. Consider

ixl—x r(1—2)+2(l—2)?+z(l—z)*+---

=z(l-z)[1+(1-2)+(1—2)*+---]
geometric ser?ers with r=1—x

Also for x = 0 we have 0+ 0+ --- solet f(x) => ", (1 —z)". Then

f(a:)—{ l—z if0<x<?2

0 ite=0

So E' =10,2). Do we have uniform convergence on E = [0,2) 7

. = n? = .. "
[ED IR RS TR

RHSZZ;O:l lim, .o+ z(1—=2)"=0+0+---=0

1 # 0 so convergence is not uniform.

6.17 Example. lim, g+ > - =7 Take E = [0, 1].

n1n3+3_

2
nx n 1
falz) = |fulz)| = mﬁﬁzﬁ_Mn
>~ M, is convergent so by Weierstrass M-test, >~ 5.3 converges to some

f(x) uniformly on E. Then

:CE%LZ?’L?’—F.Q?S_Zxﬁ0+n3+$3_zo_0+0+ =0

n=

6.18 Example. Let ZZOZO Cpx™ = co + c1x + cox? + -+ - be a power series
with radius of convergence R > 0. Then for all x with —R < = < R, the
power series converges. Let zy be such that —R < xqg < R. Do we have

oo [o.¢]
. ? .
lim g "t = E lim ¢,z"
T—T0 T—x0
n=0 n=0
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Find r > 0 such that —R < —r < 2y <r < R. If E = [—r,r| then the power
series converges uniformly on £ and xzg € E. So

o0 o0
lim g Cn® g lim ¢,z
T—xQ T—T0
n=0 n=0

So given a power series » - ¢,z with R > 0 and given any z, such that
—R < xy < R, we have

n
lim E "t = g lim ¢,z = g Cn Ty
T—T0 x—»xo

n=0

6.4 Uniform Convergence And Integration

6.19 Theorem. Assume f, : [a,b] — R, n =1,2,... are integrable on [a, b]
(continuous functions are integrable) and f,, — f uniformly on [a, b] for some
f :[a,b] — R. Then f is also integrable on [a, b] and

b b
/ fx)de = lim [ f,(z)dx
Proof. We omit the integrability proof. Let ¢ > 0 be given. Since f, — f
uniformly on [a, b], we have N such that for all n > N, for all a < z < b,
|fu(z) — f(z)] < €. Let n > N. Then

[ nwe [ s =

b
(fu(z) — f(z))dz

So let ¢’ = 2(b6—a) O

6.20 Example. F = [0,1], f,(z) = n?z™(1 — z). Let = € F be fixed.
If x =0 then f,(0)=0—0
If x =1 then f,(1)=0—0
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Ifz=0<z<1then f,(x) =n?z"(1—x) — 0
So f(z) =0 for all 0 <2z < 1. Do we have f,, — f uniformly on [0,1] 7

/1 f(z)dz ~ lim 1 fulz)dz
0

n—oo 0

1 1
/ f(x)dx:/ Odr =0
0 0
For RHS we have

1 1 1
lim [ f.(z)dr = lim </ n*z"dx —/ n%”“d:c)

For LHS we have

n+1 1 n+2 1
= lim n2x — an
n—o0 n+ 1], n -+ 2 0
1 1
= lim n? —
n—00 n+1 n+2
n2
= 11m =
% G D+ 2)

0 # 1 so convergence is not uniform.

6.21 Corollary. Assume f, : [a,b] — R, n =1,2,... are integrable on [a, b]
and the series >~ | f,(x) converges uniformly on [a,b]. Then Y >, f,(z) is
also integrable on [a, b] and

6.22 Example. Consider F(z) = > >° 7oy Where 0 <2 < 1. Show the

n=1 n(z+n
series converges uniformly on E = [0, 1].

T 1
fn<x) = |fn(x)| = m < ﬁ =M,

>~ M, is convergent. So by Weierstrass M-test, the series Y >, m is
uniformly convergent on E = [0, 1]. Let us call

/OlF([L')dZE:’y
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Then we have

1
n
1
(— —In(1+n)+ lnn)

n=1 0 n=1 n
= lim Z(%—ln(uk)ﬂnk))
n—oo Pt
—~ 1
= lim ZE—ln2+ln1—1n3+ln2—---—1n(1+n)+lnn)
k=1
(N
= lim ——ln(n—l—l))

n— oo k
k=1

Let us define

n

ay = ——In(n+1)
Then lim,, o o, = 7.

>

k=1

=a, +In(n+1)

| =

=ap+Inn+In(n+1)—Inn
=v+Inn+Inn+1)—Inn+a, —v

~
call o,

=~v+Inn+o,

So > i, = Inn+ v+ 0, where 0, — 0 as n — oo. 7 is called Euler’s
constant. v ~ 0.57721. It is not known whether v is rational or irrational.
So for large n, 1+ 35+ 34+t ~lnn+7.

n

6.23 Example. Let Z;'LOZO Cpx™ = co + c1x + cox? + -+ - be a power series
with radius of convergence R > 0. Take any xg such that —R < zy < R.

Then
x0 oo 00 o
/ (Z cn:v”> dx = Z/ cpxtdr
0 n=0 n=0 0

82



6.24 Example. > > =7 Consider )_>° 2" with R = 1. Take z¢ =

1
3

n=1 2n
1/2 [ /2 4 1/2 1
/ Zx dx—/ dr = —In(1 — z) —In-=1In2
11—z 0 2
1/2
n+1 0 1 1
nd _— = —_—m —_
Z/ e n 1), nz% 2 (n+ 1) 2= 2m

We know that

1/2 [ o 0o p1/2
/ (Z x") dr = Z/
0 n=0 n=0 0

So we get

6.5 Uniform Convergence And Differentiation

6.25 Theorem. Let f, : [a,0] — R, n=1,2,... be differentiable functions.
Assume

(i) {f/} converges uniformly to some function g on |[a, b].

(ii) There is xq € [a, b] such that {f,(x¢)} is convergent.

Then there is a differentiable function f : [a,b] — R such that f, — f
uniformly on [a,b] and f'(x) = g(z) for all x € [a, b].

Proof. {f,} is uniformly convergent on [a,b]. Use Cauchy criterion. Let
e > 0 be given. Let ¢ = --- Find N; such that for all n,m > Ny, |f.(zo) —
fm(xo)| < €. Find Nj such that for all n,m > N, and for all = € [a, ],
\fi(z) — fl (z)] <€'. Let N = max{Ny, No} and n,m > N. Take = € [a, b].
Apply Mean Value Theorem to f, — f,, on the interval [z, z]| (or [z, zo)).
Then there is a point ¢t between xo and x

fo(@) = fm(2) = (fulw0) = fin(w0)) = (£ () = £1,(8)) (x = 0)
[fn(@) = fn(@) = (fulz0) = fn(z0))| = [fu(8) = Fiu(B)] [& — wo] < €'(b —a)
—_————— —

<e! <b—a

Then we have

(@) = [ (@)| < |ful@) = frnl2) = (ful@0) = fin(20))] + [fu(20) = frn(0)]
<éb—a)+e=Eb—-—a+1)

83



So let & = ;==5. Then there is a function f : [a,b] — R such that f, — f

uniformly on [a,b] and f'(x) = g(z) for all x € [a, b]. O

6.26 Corollary. Let f, : [a,b] = R, n=1,2,... be differentiable functions.
Assume

(1) >°0°, f/(z) converges uniformly on [a, b].
(ii) There is xg € [a,b] such that Y >, f,(zo) is convergent.

Then the series > 7 | f,(z) is uniformly convergent on [a, b] and
o0 / o0
(Z fn@s)) =S i)
n=1 n=1

6.27 Example. Let the power series Y > ¢, = co+ 12 + cax® + - - - have
radius of convergence R > 0. Then R = 1 where @ = limsup,_ ., ¥/|cal-
Here f,(z) = c,z™.

Z fulz) = Z Cana™ T = ch+1(n + 1)z"
n=0 n=1 n=0

For this series

n+1
limsup {/|cp41(n + 1)| = limsup ( "1 (n + 1)|) !
n—00 n—00 - e
= lim sup < " |cn+1|> ! ( "Vn + 1) " =a

. . . [e's) n—1 . . . [e's) n
So the differentiated series >~ | c,na” " and the original series >~ cnx

have the same R. So if 0 < r < R then Y >~ ¢,nz™ ' converges uniformly
on [—r,r]. Then for all x with —r < x <r we have

oo ! o0
E c,x” | = g epnz 1
n=0 n=1

Given any x with —R < x < R, we can find a number r such that 0 <r < R
and —r <z <7r. So

(e.) / o
g e, | = E epnz 1

n=0 n=1

is true for all x with —R <z < R.
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6.28 Remark. This result is not true for a general series of functions.
6.29 Example. > 2 =7 Let = 1. Then we have

/
e} . o0 - oo N 1 / 1
;nx :x;ngj 1:x<;x> :<1—x):—(1—x)2

for —1 < x < 1. So we have

oo 1
ZQEZ%Z

n=1 (1_ 2)2

3
NPT
Il
[\

B THE END R
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7 Figures

B..(p) B, [p]

Figure 2: Open and closed balls with dy metric
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Figure 3: B,(p) with d; metric

22

-~

Figure 4: B,(0) with d, metric

e

Figure 5: B,(f)
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Figure 9: N is a neighborhood of p but not a neighborhood of ¢
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The set Set of limit points

of &

Figure 10: The set £ and its limit points

F is closed F is not closed and
not open

Figure 11: A set may be neither closed nor open

FE is perfect F' is not perfect

Figure 12: FE is perfect but F' has an isolated point
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Ha = -H) 2= H]

]

FE' is bounded F' is unbounded

Figure 13: Bounded and unbounded sets

A
bo—+
(x1,%2)
e .
[}
[}
]
22T i
i
:
1 [} |
L] L] -
a] i by

Figure 14: A k-cell in R?
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